Chinese Journal of Rehabilitation Theory and Practice ›› 2024, Vol. 30 ›› Issue (4): 487-492.doi: 10.3969/j.issn.1006-9771.2024.04.015
Previous Articles Next Articles
YUAN Yuan1,2a, ZHOU Hongjun1,2a(), WEI Bo1,2a(
), CONG Xinying1,2b, LIU Genlin1,2a, ZHENG Ying1,2a, HAO Chunxia1,2a, ZHANG Ying1,2a, WANG Yiji1,2a, KANG Haiqiong1,2a, LU Xiaolei1,2a, MENG Qianru1,2a
Received:
2023-12-07
Revised:
2024-03-13
Published:
2024-04-25
Online:
2024-05-08
Contact:
ZHOU Hongjun, E-mail: Supported by:
CLC Number:
YUAN Yuan, ZHOU Hongjun, WEI Bo, CONG Xinying, LIU Genlin, ZHENG Ying, HAO Chunxia, ZHANG Ying, WANG Yiji, KANG Haiqiong, LU Xiaolei, MENG Qianru. Wallerian degeneration in patients with traumatic cervical spinal cord injury: a magnetic resonance imaging study[J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(4): 487-492.
Table 1
Comparison of baseline data between two groups"
项目 | 合计 | WD组(n = 115) | 非WD组(n = 76) | χ2/Z值 | P值 |
---|---|---|---|---|---|
性别/n | |||||
女 | 28 | 15 | 13 | 0.603 | 0.531 |
男 | 163 | 100 | 63 | ||
年龄/岁 | 45.00(32.00, 56.00) | 33(25.00, 45.50) | 54(46.75, 61.00) | 3.820 | < 0.001 |
损伤机制/n | |||||
无骨折脱位 | 90 | 44 | 46 | 9.104 | 0.003 |
骨折/脱位 | 101 | 71 | 30 | ||
AIS 分级/n | |||||
Aa | 45 | 34 | 11 | 16.413 | < 0.001 |
Ba | 26 | 20 | 6 | ||
Cab | 39 | 26 | 13 | ||
Db | 81 | 35 | 46 | ||
神经平面 | |||||
C2-4 | 132 | 77 | 55 | 0.628 | 0.428 |
C5-8 | 59 | 38 | 21 | ||
获得MRI时间/d | 97(37, 197) | 108(51.5, 200) | 93.5(28.75, 175.75) | 94.618 | < 0.001 |
[1] | WALLER A. Experiments on the section of the glosso-pharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibres[J]. Edinb Med Surg J, 1851, 76(189): 369-376. |
[2] |
KOLIATSOS V E, ALEXANDRIS A S. Wallerian degeneration as a therapeutic target in traumatic brain injury[J]. Curr Opin Neurol, 2019, 32(6): 786-795.
doi: 10.1097/WCO.0000000000000763 pmid: 31633494 |
[3] |
LLOBET ROSELL A, NEUKOMM L J. Axon death signalling in Wallerian degeneration among species and in disease[J]. Open Biol, 2019, 9(8): 190118.
doi: 10.1098/rsob.190118 |
[4] |
COLEMAN M P, HÖKE A. Programmed axon degeneration: from mouse to mechanism to medicine[J]. Nat Rev Neurosci, 2020, 21(4): 183-196.
doi: 10.1038/s41583-020-0269-3 pmid: 32152523 |
[5] |
ZHANG K, JIANG M, FANG Y. The drama of Wallerian degeneration: the cast, crew, and script[J]. Annu Rev Genet, 2021, 55: 93-113.
doi: 10.1146/annurev-genet-071819-103917 pmid: 34351802 |
[6] |
FORBRIG R, DANEK A. Wallerian degeneration of the pyramidal tract[J]. Dtsch Arztebl Int, 2022, 119(9): 141.
doi: 10.3238/arztebl.m2022.0013 pmid: 35535722 |
[7] |
KESER Z, FARIA A V, HILLIS A E. Progressive crossed cerebellar Wallerian degeneration after hemispheric infarct[J]. Stroke, 2022, 53(4): e143-e144.
doi: 10.1161/STROKEAHA.122.038915 pmid: 35306835 |
[8] |
DANIEL P M, STRICH S J. Histological observations on Wallerian degeneration in the spinal cord of the baboon, Papio papio[J]. Acta Neuropathol, 1969, 12(4): 314-328.
pmid: 4979891 |
[9] |
LINDBERG P G, BENSMAIL D, BUSSEL B, et al. Wallerian degeneration in lateral cervical spinal cord detected with diffusion tensor imaging in four chronic stroke patients[J]. J Neuroimaging, 2011, 21(1): 44-48.
doi: 10.1111/j.1552-6569.2009.00409.x pmid: 19732295 |
[10] |
VALENCIA M P, CASTILLO M. MRI findings in posttraumatic spinal cord Wallerian degeneration[J]. Clin Imaging, 2006, 30(6): 431-433.
doi: 10.1016/j.clinimag.2006.05.031 |
[11] |
KASHANI H, FARB R, KUCHARCZYK W. Magnetic resonance imaging demonstration of a single lesion causing Wallerian degeneration in ascending and descending tracts in the spinal cord[J]. J Comput Assist Tomogr, 2010, 34(2): 251-253.
doi: 10.1097/RCT.0b013e3181c34626 pmid: 20351516 |
[12] |
FISCHER T, STERN C, FREUND P, et al. Wallerian degeneration in cervical spinal cord tracts is commonly seen in routine T2-weighted MRI after traumatic spinal cord injury and is associated with impairment in a retrospective study[J]. Eur Radiol, 2021, 31(5): 2923-2932.
doi: 10.1007/s00330-020-07388-2 pmid: 33125565 |
[13] |
ORTEGA M A, FRAILE-MARTINEZ O, GARCÍA-MONTERO C, et al. A comprehensive look at the psychoneuroimmunoendocrinology of spinal cord injury and its progression: mechanisms and clinical opportunities[J]. Mil Med Res, 2023, 10(1): 26.
doi: 10.1186/s40779-023-00461-z pmid: 37291666 |
[14] |
STERNER R C, STERNER R M. Immune response following traumatic spinal cord injury: pathophysiology and therapies[J]. Front Immunol, 2023, 13: 1084101.
doi: 10.3389/fimmu.2022.1084101 |
[15] | YU H, LIU Z, PANG M, et al. Wallerian degeneration assessed by multimodal MRI of cervical spinal cord is associated with neurological impairment after spinal cord injury[J]. [ahead of print]. J Neurotrauma, 2024. doi: 10.1089/neu.2023.0305. Epub ahead of print. PMID: 38204213. |
[16] | 李建军, 王方永,译. 脊髓损伤神经学分类国际标准(2011年修订)[J]. «中国康复理论与实践», 2011, 17(10): 963-972. |
LI J J, WANG F Y. International Standards for Neurological Classification of Spinal Cord Injury[J]. Chin J Rehabil Theory Pract, 2011, 17(10): 963-972 | |
[17] |
FREUND P, SEIF M, WEISKOPF N, et al. MRI in traumatic spinal cord injury: from clinical assessment to neuroimaging biomarkers[J]. Lancet Neurol, 2019, 18(12): 1123-1135.
doi: S1474-4422(19)30138-3 pmid: 31405713 |
[18] |
KUHN M J, MIKULIS D J, AYOUB D M, et al. Wallerian degeneration after cerebral infarction: evaluation with sequential MR imaging[J]. Radiology, 1989, 172(1): 179-182.
doi: 10.1148/radiology.172.1.2740501 pmid: 2740501 |
[19] |
BUSS A, PECH K, MERKLER D, et al. Sequential loss of myelin proteins during Wallerian degeneration in the human spinal cord[J]. Brain, 2005, 128(Pt 2): 356-364.
doi: 10.1093/brain/awh355 pmid: 15634734 |
[20] |
KIRSHBLUM S, SNIDER B, EREN F, et al. Characterizing natural recovery after traumatic spinal cord injury[J]. J Neurotrauma, 2021, 38(9): 1267-1284.
doi: 10.1089/neu.2020.7473 |
[21] | BECERRA J L, BREIER J I, WISNEWSKI T W, et al. In vivo proton magnetic resonance spectroscopy of the human cervical spinal cord[J]. Magn Reson Med, 2001, 45(6): 902-906. |
[22] |
BECERRA J L, PUCKETT W R, HIESTER E D, et al. MR-pathologic comparisons of Wallerian degeneration in spinal cord injury[J]. Am J Neuroradiol, 1995, 16(1): 125-133.
pmid: 7900580 |
[23] |
CONFORTI L, GILLEY J, COLEMAN M P. Wallerian degeneration: an emerging axon death pathway linking injury and disease[J]. Nat Rev Neurosci, 2014, 15(6): 394-409.
doi: 10.1038/nrn3680 pmid: 24840802 |
[24] |
BRÜLL M, GEESE N, CELARDO I, et al. Preparation of viable human neurites for neurobiological and neurodegeneration studies[J]. Cells, 2024, 13(3): 242.
doi: 10.3390/cells13030242 |
[25] |
KOU Y, YUAN Y, LI Q, et al. Neutrophil peptide 1 accelerates the clearance of degenerative axons during Wallerian degeneration by activating macrophages after peripheral nerve crush injury[J]. Neural Regen Res, 2024, 19(8): 1822-1827.
doi: 10.4103/1673-5374.387978 pmid: 38103249 |
[26] |
KHAZMA T, GROSSMAN A, GUEZ-HADDAD J, et al. Structure-function analysis of ceTIR-1/hSARM1 explains the lack of Wallerian axonal degeneration in C. elegans[J]. Cell Rep, 2023, 42(9): 113026.
doi: 10.1016/j.celrep.2023.113026 |
[27] | WALLER T J, COLLINS C A. Opposing roles of Fos, Raw, and SARM1 in the regulation of axonal degeneration and synaptic structure[J]. Front Cell Neurosci, 2023, 17: 1283995. |
[28] |
DAVID G, VALLOTTON K, HUPP M, et al. Extent of cord pathology in the lumbosacral enlargement in non-traumatic versus traumatic spinal cord injury[J]. J Neurotrauma, 2022, 39(9-10): 639-650.
doi: 10.1089/neu.2021.0389 |
[29] |
DAVID G, MOHAMMADI S, MARTIN A R, et al. Traumatic and nontraumatic spinal cord injury: pathological insights from neuroimaging[J]. Nat Rev Neurol, 2019, 15(12): 718-731.
doi: 10.1038/s41582-019-0270-5 pmid: 31673093 |
[1] | ZHANG Minglan, ZHANG Lingling, WANG Lisha, LIU Li, GAO Run, RAO Jiang, LIU Wan, XIA Zi'an, ZHANG Chuanwen, CHENG Xinxin. Impact of autonomic nerve function on motor function in patients with post-stroke depression [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(2): 223-231. |
[2] | YUAN Yuan, ZHOU Hongjun, CONG Xinying, LIU Genlin, WEI Bo, ZHENG Ying, HAO Chunxia, ZHANG Ying, WANG Yiji, KANG Haiqiong, LU Xiaolei, MENG Qianru. Relationship between impairment and magnetic resonance imaging finding in patients with traumatic cervical spinal cord injury after surgery [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(6): 725-730. |
[3] | CHENG Siman, XIN Rong, ZHAO Yan, LIU Qingyu, XIE Jiale, LIU Peng, WANG Pu. Functional magnetic resonance imaging study about repetitive transcranial magnetic stimulation for dysfunction after stroke: a scoping review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(2): 193-204. |
[4] | ZHANG Xiaoyu,YANG Fan,WEN Jianzhong,YU Weiyong. Application of resting-state functional magnetic resonance imaging in acute mild traumatic brain injury [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(9): 1084-1088. |
[5] | CAI Guiyan,CHEN Ruilin,XU Shurui,TAO Jing,LIU Jiao. Characteristics of amplitude of low frequency fluctuation in patients with knee osteoarthritis and low back pain [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(5): 602-608. |
[6] | DAI Yan-hong, HUANG Jia-ying, LUO Hai-long, WANG Rui-qing, HUANG Ying-an, CHEN Zhuo-ming, WANG Hong. Changes in Gray Matter Volume in Chronic Nonfluent Aphasia after Cortical Cerebral Infarction [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2021, 27(7): 785-790. |
[7] | Xiao-qian YING,Yi GAO,Li-min LIAO. Small-world Network Features of Brain Functional Network as Strong Void Perception for Healthy Female [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2021, 27(5): 510-515. |
[8] | Shao-hong YU,Hao-jie ZHANG,Tong ZHANG. Advance in Magnetic Resonance Imaging Research of Rehabilitation Therapy on Cerebral Network Remodeling of Motor Deficits after Stroke (review) [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2021, 27(5): 516-521. |
[9] | Gen-lin LIU,Hong-jun ZHOU,Jian-jun LI,Bo WEI,Yi-ji WANG,Ying ZHANG,Qian-ru MENG,Ying ZHENG,Chun-xia HAO,Hai-qiong KANG,Xiao-lei LU,Yuan YUAN. Clinical Manifestations and MRI Features of Pediatric Spinal Cord Injury after Back Bend [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2021, 27(4): 456-465. |
[10] | Xiao-qian YING,Li-min LIAO. Changes of Brain Functional Connections in Patients with Overactive Bladder [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2021, 27(4): 466-471. |
[11] | Yan LIU,He BA,Deng ZHAO,Li LIU,Jian-fei LI,Jian WANG,Li LI. Effect of Music Therapy Based on Scalp Acupuncture on Post-stroke Depression: Study with Resting-state Functional Magnetic Resonance Imaging [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2021, 27(3): 282-289. |
[12] | ZHANG Xiao-tong,LI Na,CHEN Zhao-cong,LIANG Jing-feng,YU Yong,WU Hui-xiang,KANG Zhuang,QIU Wei-hong. Potential Role of Right Cerebellum in Post-stroke Aphasia: A Preliminary Study Based on Granger Causality Analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2021, 27(12): 1458-1463. |
[13] | ZHANG Hao-jie, LI Fang, LI Chao-jin-zi, MI Hai-xia, LIU Xu, BAI Chen, LI Bing-jie, DU Xiao-xia, ZHANG Tong. Advance in Application of Neuroimaging in Plasticity Mechanism after Stroke (review) [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2021, 27(1): 48-53. |
[14] | LIU Shu-jia,ZHANG Jun-wei,WANG Fang-yong,TANG He-hu,BAI Jin-zhu,LÜ Zhen,LI Jian-jun. Motor Control Function of Brain in Subacute Complete Spinal Cord Injured Patients: A Functional Magnetic Resonance Imaging Study [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2020, 26(7): 757-765. |
[15] | LI Xiao-lin,ZHANG Bin-long,FAN Rui-wen,XU Min-jie,HUANG Xing,SHU Xin,LI Chang-ming,TAN Zhong-jian,CHANG Jing-ling. Stimulation Mode and Model of Word-picture Language Task in Functional Magnetic Resonance Imaging Test for Post-stroke Aphasia (review) [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2020, 26(6): 668-672. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|