Chinese Journal of Rehabilitation Theory and Practice ›› 2024, Vol. 30 ›› Issue (5): 505-512.doi: 10.3969/j.issn.1006-9771.2024.05.002
Previous Articles Next Articles
Received:
2024-04-06
Published:
2024-05-25
Online:
2024-06-12
Contact:
YANG Jian, E-mail: Supported by:
CLC Number:
WANG Hongzhi, YANG Jian. Application of virtual reality technology in physical activity and health of children and adolescents with cerebral palsy: a systematic review of systematic reviews[J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(5): 505-512.
Table 1
PICO framework"
人群(Population) | 干预(Intervention) | 比较(Comparison) | 健康结局(Outcome) |
---|---|---|---|
4~18岁患有脑瘫的儿童青少年 | 干预类型(VR技术应用模式) 沉浸式环境模拟 交互式动感游戏化 虚拟训练和指导 基于人工智能的活动数据追踪与分析、动作捕捉和反馈、生物反馈集成和可穿戴技术应用 增强现实集成 VR技术应用于脑瘫儿童身体活动的干预方案 干预方式:VR技术应用于儿童身体活动 干预频率:每周干预频次 干预强度:每次身体活动的强度 干预持续时间:每次参与身体活动的时间 | 与常规身体活动比较 与传统康复干预比较 干预前后比较 | 身体活动水平与健康行为 身体活动参与、社交/认知能力 身体运动功能 上肢功能与力量 粗大运动功能 精细运动功能 姿势控制和平衡功能 运动协调能力 感觉运动功能 活动 移动 日常生活能力 生活独立性 |
Table 2
Basic characteristics of included literature"
纳入文献 | 国家 | 样本特征 | 健康/功能状况 | 干预类型 | 干预方案 | 健康结局指标 |
---|---|---|---|---|---|---|
Tobaiqi等[ | 沙特阿拉伯 | 纳入文献n = 45 样本量n = 1580 年龄8~18岁 | 脑瘫 | 沉浸式环境模拟、动作捕捉和反馈; 增强现实集成; 虚拟训练和指导 | 干预方式:基于VR的运动游戏,包括踩踏固定自行车、阻力训练、水上训练、平衡训练 干预频率:每次25~90 min,每周1~7次 干预强度:中等~剧烈 干预时间:4~20周 | 身体活动水平与健康行为 社交/认知能力提升 身体运动功能 步速改善 上肢运动的准确性、灵活性、活动范围和流畅性改善 平衡功能改善 手的精细运动功能改善 活动 未提及 |
Komariah等[ | 印度尼西亚 | 纳入文献n = 19 样本量n = 894 年龄5~16岁 | 脑瘫 | 沉浸式环境模拟、动作捕捉和反馈; 基于人工智能的活动数据追踪与分析、动作捕捉和反馈、生物反馈集成和可穿戴技术应用 | 干预方式:基于VR的运动游戏 干预频率:每次20~60 min,每周2~6次 干预强度:中等~剧烈 干预时间:4~12周 | 身体活动水平与健康行为 未提及 身体运动功能 粗大运动功能改善 上肢功能与上肢力量改善 活动 独立生活能力增强 |
Liu等[ | 中国 | 纳入文献n = 16 样本量n = 513 年龄10~18岁 | 脑瘫:痉挛性偏瘫和痉挛性双瘫 | 沉浸式环境模拟、动作捕捉和反馈; 增强现实集成; 交互式动感游戏化; 虚拟训练和指导 | 干预方式: VR训练 干预频率:每次15~60 min,每周2~6次 干预强度:未提及 干预时间:3~12周 | 身体活动水平与健康行为 未提及 身体运动功能 平衡功能改善 粗大运动功能改善 活动 未提及 |
Zhang 等[ | 中国 | 纳入文献n = 17 样本量n = 583 年龄5~12岁 | 脑瘫:痉挛性双瘫 | 沉浸式环境模拟、动作捕捉和反馈; 增强现实集成; 基于人工智能的活动数据追踪与分析、动作捕捉和反馈、生物反馈集成和可穿戴技术应用 | 干预方式: VR训练 干预频率:每次20~60 min,每周2~6次 干预强度:未提及 干预时间:3~20周 | 身体活动水平与健康行为 未提及 身体运动功能 手抓握功能改善 粗大运动功能改善 活动 日常生活活动功能改善 |
Han等[ | 印度尼西亚 | 纳入文献n = 11 样本量n = 442 年龄5~12岁 | 脑瘫:痉挛性偏瘫和痉挛性双瘫 | 沉浸式环境模拟、动作捕捉和反馈; 增强现实集成; 交互式动感游戏化; 虚拟训练和指导 | 干预方式:VR技术 干预频率:每次25~60 min,每周10~15次 干预强度:未提及 干预时间:3~20周 | 身体活动水平与健康行为 身体活动频率增加 身体运动功能 平衡功能改善 手部精细操作功能显著改善,灵活性增强 活动 自理能力和功能独立性改善,如移动能力、社交交往和认知能力等 |
Fandim等[ | 巴西 | 纳入文献n = 23 样本量n = 1364 年龄7~14岁 | 脑瘫 | 沉浸式环境模拟、动作捕捉和反馈; 基于人工智能的活动数据追踪与分析、动作捕捉和反馈、生物反馈集成和可穿戴技术应用; 交互式动感游戏化; 虚拟训练和指导 | 干预方式:基于VR的运动康复 干预频率:每次20~90 min,每周2~7次 干预强度:中等~剧烈 干预时间:4~20周 | 身体活动水平与健康行为 未提及 身体运动功能 姿势控制和平衡功能改善 步速提升 下肢力量增强 活动 日常生活活动能力改善 |
Lopes 等[ | 巴西 | 纳入文献n = 5 样本量n = 27 年龄10~18岁 | 脑瘫 | 沉浸式环境模拟、动作捕捉和反馈; 交互式动感游戏化 | 干预方式:VR技术 干预频率:每次8~30 min,每周2~3次 干预强度:未提及 干预时间:6~24周 | 身体活动水平与健康行为 身体活动参与频率增加 身体运动功能 运动协调能力增强 感觉运动功能改善 活动 未提及 |
Pereira [ | 巴西 | 纳入文献n = 14 样本量n = 289 年龄4~18岁 | 脑瘫 | 沉浸式环境模拟、动作捕捉和反馈; 基于人工智能的活动数据追踪与分析、动作捕捉和反馈、生物反馈集成和可穿戴技术应用; 交互式动感游戏化; 虚拟训练和指导 | 干预方式:VR技术、互动电脑游戏、沉浸式虚拟环境和可穿戴触觉设备等 干预频率:每次45~90 min, 每周1~5次 干预强度:未提及 干预时间:1~8周 | 身体活动水平与健康行为 参与身体活动的动机变强 身体运动功能 手的精细运动功能(速度、敏捷性、双边协调性、力量)改善 活动 未提及 |
[1] |
BAXTER P, MORRIS C, ROSENBAUM P, et al. The definition and classification of cerebral palsy[J]. Dev Med Child Neurol, 2007, 49(s109): 1-44.
pmid: 17371509 |
[2] |
王筠婷, 宋贝贝, 赵迪. 脑性瘫痪儿童青少年全身振动干预的健康和功能结局:基于WHO-FICs的系统综述[J]. 中国康复理论与实践, 2023, 29(1): 55-63.
doi: 10.3969/j.issn.1006-9771.2023.01.008 |
WANG Y T, SONG B B, ZHAO D, et al. Health and functional outcome of whole body vibration for children and adolescents with cerebral palsy: a systematic review using WHO-FICs[J]. Chin J Rehabil Theory Pract, 2023, 29(1): 55-63. | |
[3] |
M PIOVESANA A, ROSS S, LLOYD O, et al. Randomized controlled trial of a web-based multi-modal therapy program for executive functioning in children and adolescents with unilateral cerebral palsy[J]. Disabil Rehabil, 2017, 39(20): 2021-2028.
doi: 10.1080/09638288.2016.1213899 pmid: 27665941 |
[4] |
吴亮, 许秀, 罗亮. 运动康复和适应性身体活动对痉挛性脑性瘫痪儿童青少年心理运动功能、运动功能和动作发展的效益: 基于ICF的循证研究[J]. 中国康复理论与实践, 2024, 30(2): 148-156.
doi: 10.3969/j.issn.1006-9771.2024.02.003 |
WU L, XU X, LUO L. Effect of exercise rehabilitation and adapted physical activity on psychomotor skills, motor abilities and motor development in children and adolescents with spastic cerebral palsy: an evidence-based research using ICF[J]. Chin J Rehabil Theory Pract, 2024, 30(2): 148-156. | |
[5] | BOYD R N, BAQUE E, PIOVESANA A, et al. Mitii™ ABI: study protocol of a randomised controlled trial of a web-based multi-modal training program for children and adolescents with an acquired brain injury (ABI)[J]. BMC Neurol, 2015, 15(19): 140. |
[6] | GRATTAN-SMITH P J, DALE R C. Chapter 40: Pediatric functional neurologic symptoms[M]// HALLETTM, STONEJ, CARSONA.Handbook of clinical neurology. Elsevier, 2016: 489-498. |
[7] |
MITCHELL L E, ZIVIANI J, BOYD R N. A randomized controlled trial of web-based training to increase activity in children with cerebral palsy[J]. Dev Med Child Neurol, 2016, 58(7): 767-773.
doi: 10.1111/dmcn.13065 pmid: 26877078 |
[8] | ATASAVUN UYSAL S, BALTACI G. Effects of Nintendo Wii™ training on occupational performance, balance, and daily living activities in children with spastic hemiplegic cerebral palsy: a single-blind and randomized trial[J]. Games Health J, 2016, 5(5): 311-317. |
[9] |
喜悦, 杨剑. 不同身体活动对脑性瘫痪儿童青少年健康效益的系统综述[J]. 中国康复理论与实践, 2024, 30(2): 157-167.
doi: 10.3969/j.issn.1006-9771.2024.02.004 |
XI Y, YANG J. Physical activity intervention and its health benefits for children and adolescents with cerebral palsy: a systematic review[J]. Chin J Rehabil Theory Pract, 2024, 30(2): 157-167. | |
[10] |
崔甜甜, 杨钰琳, 崔腾腾, 等. 不同强化训练对脑性瘫痪儿童上肢运动功能效果的网状Meta分析[J]. 中国康复理论与实践, 2024, 30(4): 437-448.
doi: 10.3969/j.issn.1006-9771.2024.04.009 |
CUI T T, YANG Y L, CUI T T, et al. Effect of different intensive training on upper limb motor function in children with cerebral palsy: a network meta-analysis[J]. Chin J Rehabil Theory Pract, 2024, 30(4): 437-448. | |
[11] |
BOOTH A T C, BUIZER A I, MEYNS P, et al. The efficacy of functional gait training in children and young adults with cerebral palsy: a systematic review and meta-analysis[J]. Dev Med Child Neurol, 2018, 60(9): 866-883.
doi: 10.1111/dmcn.13708 pmid: 29512110 |
[12] |
DEWAR R, LOVE S, JOHNSTON L M. Exercise interventions improve postural control in children with cerebral palsy: a systematic review[J]. Dev Med Child Neurol, 2015, 57(6): 504-520.
doi: 10.1111/dmcn.12660 pmid: 25523410 |
[13] | TINDERHOLT MYRHAUG H, ØSTENSJØ S, LARUN L, et al. Intensive training of motor function and functional skills among young children with cerebral palsy: a systematic review and meta-analysis[J]. BMC Pediatr, 2014, 14(5): 292. |
[14] | TOBAIQI M A, ALBADAWI E A, FADLALMOLA H A, et al. Application of virtual reality-assisted exergaming on the rehabilitation of children with cerebral palsy: a systematic review and meta-analysis[J]. J Clin Med, 2023, 12(22): 7091. |
[15] | KOMARIAH M, AMIRAH S, ABDURRAHMAN M F, et al. Effectivity of virtual reality to improve balance, motor function, activities of daily living, and upper limb function in children with cerebral palsy: a systematic review and meta-analysis[J]. Ther Clin Risk Manag, 2024, 20(14): 95-109. |
[16] | LIU C, WANG X, CHEN R, et al. The effects of virtual reality training on balance, gross motor function, and daily living ability in children with cerebral palsy: systematic review and meta-analysis[J]. JMIR Serious Games, 2022, 10(4): e38972. |
[17] | ZHANG Y, LI R, MIAO X, et al. Virtual motor training to improve the activities of daily living, hand grip, and gross motor function among children with cerebral palsy: meta-regression analysis[J]. Gait Posture, 2022, 91(1): 297-305. |
[18] | HAN Y, PARK S. Effectiveness of virtual reality on activities of daily living in children with cerebral palsy: a systematic review and meta-analysis[J]. PeerJ, 2023, 11(31): e15964. |
[19] |
FANDIM J V, SARAGIOTTO B T, PORFÍRIO G J M, et al. Effectiveness of virtual reality in children and young adults with cerebral palsy: a systematic review of randomized controlled trial[J]. Braz J Phys Ther, 2021, 25(4): 369-386.
doi: 10.1016/j.bjpt.2020.11.003 pmid: 33358737 |
[20] |
LOPES J B P, DUARTE N A C, LAZZARI R D, et al. Virtual reality in the rehabilitation process for individuals with cerebral palsy and Down syndrome: a systematic review[J]. J Bodyw Mov Ther, 2020, 24(4): 479-483.
doi: 10.1016/j.jbmt.2018.06.006 pmid: 33218550 |
[21] | PEREIRA K U, SILVA M Z, PFEIFER L I. The use of virtual reality in the stimulation of manual function in children with cerebral palsy: a systematic review[J]. Rev Paul Pediatr, 2023, 41(13): e2021283. |
[22] | BURIN-CHU S, BAILLET H, LECONTE P, et al. Effectiveness of virtual reality interventions of the upper limb in children and young adults with cerebral palsy: a systematic review with meta-analysis[J]. Clin Rehabil, 2024, 38(1): 15-33. |
[23] |
SPOMER A M, CONNER B C, SCHWARTZ M H, et al. Audiovisual biofeedback amplifies plantarflexor adaptation during walking among children with cerebral palsy[J]. J Neuroeng Rehabil, 2023, 20(1): 164.
doi: 10.1186/s12984-023-01279-5 pmid: 38062454 |
[24] | WANG N, LIU N, LIU S, et al. Effects of nonimmersive virtual reality intervention on children with spastic cerebral palsy: a meta-analysis and systematic review[J]. Am J Phys Med Rehabil, 2023, 102(12): 1130-1138. |
[25] | GUINET A L, BOUYER G, OTMANE S, et al. Visual feedback in augmented reality to walk at predefined speed cross-sectional study including children with cerebral palsy[J]. IEEE Trans Neural Syst Rehabil Eng, 2022, 30: 2322-2331. |
[26] |
CHOI J Y, YI S H, AO L, et al. Virtual reality rehabilitation in children with brain injury: a randomized controlled trial[J]. Dev Med Child Neurol, 2021, 63(4): 480-487.
doi: 10.1111/dmcn.14762 pmid: 33326122 |
[27] | CHIU H C, ADA L, BANIA T A. Mechanically assisted walking training for walking, participation, and quality of life in children with cerebral palsy[J]. Cochrane Database Syst Rev, 2020, 11(11): Cd013114. |
[28] |
何艳, 张琦, 胡晓诗, 等. 功能性电刺激康复踏车训练对痉挛型脑性瘫痪儿童下肢运动功能的效果[J]. 中国康复理论与实践, 2021, 27(12): 1464-1469.
doi: 10.3969/j.issn.1006-9771.2021.12.013 |
HE Y, ZHANG Q, HU X S, et al. Effect of functional electrical stimulation rehabilitation cycling on lower limb motor function in children with spastic cerebral palsy[J]. Chin J Rehabil Theory Pract, 2021, 27(12): 1464-1469. | |
[29] |
ARNONI J L B, KLEINER A F R, LIMA C R G, et al. Nonimmersive virtual reality as complementary rehabilitation on functional mobility and gait in cerebral palsy: a randomized controlled clinical trial[J]. Games Health J, 2021, 10(4): 254-263.
doi: 10.1089/g4h.2021.0009 pmid: 34370612 |
[30] | CHEN Y, GARCIA-VERGARA S, HOWARD A M. Effect of a home-based virtual reality intervention for children with cerebral palsy using Super Pop VR Evaluation Metrics: a feasibility study[J]. Rehabil Res Pract, 2015, 2015: 812348. |
[1] | WEI Xiaowei. Effect of digital empowerment techniques on physical activity and health for children with intellectual and developmental disabilities: a systematic review [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(5): 497-504. |
[2] | SU Rufeng, ZHONG Xiaoke, GAO Xiaoyan, JIANG Changhao. Application of artificial intelligence in anxiety and depression among children and adolescents: a scoping review [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(5): 513-519. |
[3] | ZHONG Xiaoke, WANG Qi, CHANG Siqin, JIANG Changhao. Effect of long-term physical activity on executive function of children with autism spectrum disorder: a systematic review [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(5): 535-542. |
[4] | WU Jiaming, ZHANG Qing, WU Aihong. Functioning, health and developmental benefits of music interventions for children and adolescents with intellectual and developmental disabilities: a systematic review of systematic reviews [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(5): 543-553. |
[5] | WEI Ning, ZENG Yanling, JIANG Na, ZHANG Qian, YI Xiaozhe, WANG Jianyun, WANG Dengting, ZHANG Yan, PEI Hongbo, HUANG Chaorong. Impact of parental efficacy in doctor-patient communication on rehabilitation outcomes for children with autism spectrum disorder [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(5): 577-585. |
[6] | WEI Xiaowei. Research on international policies of digital empowerment of physical activity and health in children with disabilities: framework, core content, and strategic action [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(4): 381-388. |
[7] | WANG Zhenzhou, ZHANG Yang. International researches on artificial intelligence enabled diagnosis and intervention for children with disabilities in the past two decades: a visualized analysis [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(4): 404-415. |
[8] | LIANG Xiaoxiao, ZHENG Jiejiao, WU Xuejiao, CHEN Xi, ZHANG Tingyu, GU Qiuyi. Effect of virtual reality training on balance and walking in old patients with idiopathic normal pressure hydrocephalus [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(4): 424-430. |
[9] | CUI Tiantian, YANG Yulin, CUI Tengteng, MA Lihong. Effect of different intensive training on upper limb motor function in children with cerebral palsy: a network meta-analysis [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(4): 437-448. |
[10] | SU Zhaoyin, KANG Weihan, LIU Yatao, LÜ Yuan, Michael NERLICH. Relationship between physical activity levels and stroke risk among middle-aged and older adults in China based on CHARLS data [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(4): 449-453. |
[11] | LI Liang, HUANG Ziyun, YANG Yicheng, WU Xueping. Effect of ball-based physical activity on basic motor skills and executive function in children with attention deficit hyperactivity disorder [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(4): 479-486. |
[12] | LU Kai, LIU Yuxin, WANG Sujuan, CHEN Weiming, XU Yetao, ZHOU Hao, YAO Yelin, YIN Huanhuan, ZHANG Zhengzheng, DU Yan. Inter-rater reliability of Medical Research Council muscle strength test in pediatric intensive care unit [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(4): 493-496. |
[13] | WANG Xinting, YANG Jian. Content and psychometric properties of children's motor function and activity measurements using ICF [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(3): 265-272. |
[14] | YU Chunyang, LIU Ran, ZHAO Yishuang, GUO Shuai, ZHOU Ya'nan, LI Li, ZHANG Hao. Effect of virtual reality treadmill training on balance and gait in stroke patients [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(3): 310-315. |
[15] | ZHANG Qing, WU Aihong, WU Dang, SHI Caixiu. Building an inclusive education-oriented, ICF-based and multi-faceted education placement service for children with special needs: policy, theoretical framework and methodology [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(2): 141-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|