Chinese Journal of Rehabilitation Theory and Practice ›› 2025, Vol. 31 ›› Issue (3): 254-263.doi: 10.3969/j.issn.1006-9771.2025.03.002
Previous Articles Next Articles
SU Panpan1,2, YE Peng2, LU Qian2, HE Chuan2, LU Xiao1()
Received:
2024-12-04
Revised:
2025-02-08
Published:
2025-03-25
Online:
2025-03-25
Contact:
LU Xiao, E-mail: Supported by:
CLC Number:
SU Panpan, YE Peng, LU Qian, HE Chuan, LU Xiao. Effect of visual deprivation training combined with proprioceptive training on balance in hemiplegic patients after stroke[J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(3): 254-263.
Table 1
Comparison of baseline data among four groups"
组别 | n | 性别(男/女)/n | 年龄/岁 | 病程/月 | 卒中类型(梗死/出血)/n | 偏瘫侧(左/右)/n |
---|---|---|---|---|---|---|
对照组 | 20 | 15/5 | 57.60±10.73 | 3.20±1.15 | 17/3 | 13/7 |
本体训练组 | 20 | 16/4 | 58.95±7.37 | 3.25±1.34 | 14/6 | 15/5 |
视觉剥夺组 | 20 | 12/8 | 60.01±12.64 | 3.71±0.75 | 14/6 | 10/10 |
联合组 | 20 | 13/7 | 57.90±13.05 | 3.65±0.93 | 15/5 | 11/9 |
χ2/F值 | 2.381 | 0.195 | 1.198 | 1.600 | 3.107 | |
P值 | 0.497 | 0.910 | 0.316 | 0.659 | 0.375 |
Table 2
Descriptive statistical results of balance test parameters among four groups pre- and post-treatment"
变量 | 状态 | 组别 | n | 治疗前 | 治疗后 | |||
---|---|---|---|---|---|---|---|---|
均值 | 标准差 | 均值 | 标准差 | |||||
前后平均运动速度/(mm·s-1) | 睁眼 | 对照组 | 20 | 18.45 | 5.84 | 15.08 | 3.45 | |
本体训练组 | 20 | 18.14 | 8.51 | 12.75 | 5.71 | |||
视觉剥夺组 | 20 | 17.78 | 7.35 | 12.05 | 3.45 | |||
联合组 | 20 | 19.82 | 9.11 | 9.49 | 3.03 | |||
闭眼 | 对照组 | 20 | 30.18 | 5.06 | 27.69 | 4.09 | ||
本体训练组 | 20 | 32.02 | 11.19 | 20.96 | 5.87 | |||
视觉剥夺组 | 20 | 30.82 | 9.74 | 18.65 | 3.48 | |||
联合组 | 20 | 31.05 | 11.21 | 15.42 | 4.41 | |||
左右平均运动速度/(mm·s-1) | 睁眼 | 对照组 | 20 | 14.70 | 2.89 | 13.09 | 2.59 | |
本体训练组 | 20 | 15.67 | 3.63 | 11.36 | 2.84 | |||
视觉剥夺组 | 20 | 14.90 | 4.01 | 10.47 | 2.17 | |||
联合组 | 20 | 15.03 | 4.84 | 8.42 | 2.49 | |||
闭眼 | 对照组 | 20 | 20.05 | 3.05 | 18.97 | 3.22 | ||
本体训练组 | 20 | 21.86 | 7.07 | 17.08 | 4.56 | |||
视觉剥夺组 | 20 | 20.83 | 6.27 | 15.50 | 4.26 | |||
联合组 | 20 | 21.91 | 8.24 | 13.10 | 3.08 | |||
运动椭圆面积/mm2 | 睁眼 | 对照组 | 20 | 1041.54 | 153.95 | 800.38 | 102.05 | |
本体训练组 | 20 | 979.02 | 438.27 | 656.62 | 286.54 | |||
视觉剥夺组 | 20 | 901.46 | 262.99 | 588.82 | 159.68 | |||
联合组 | 20 | 992.45 | 256.43 | 410.08 | 139.57 | |||
闭眼 | 对照组 | 20 | 1604.93 | 311.33 | 1446.07 | 336.88 | ||
本体训练组 | 20 | 1618.81 | 524.25 | 1152.33 | 368.36 | |||
视觉剥夺组 | 20 | 1714.11 | 478.76 | 1072.01 | 263.77 | |||
联合组 | 20 | 1523.12 | 491.19 | 792.60 | 232.21 | |||
运动长度/mm | 睁眼 | 对照组 | 20 | 1125.15 | 150.28 | 775.27 | 114.62 | |
本体训练组 | 20 | 1119.88 | 332.85 | 673.69 | 226.95 | |||
视觉剥夺组 | 20 | 977.37 | 256.57 | 587.67 | 157.89 | |||
联合组 | 20 | 1072.75 | 307.51 | 449.55 | 148.88 | |||
闭眼 | 对照组 | 20 | 1659.80 | 243.02 | 1402.90 | 298.89 | ||
本体训练组 | 20 | 1647.79 | 288.52 | 1147.58 | 293.09 | |||
视觉剥夺组 | 20 | 1522.89 | 362.37 | 1009.48 | 190.73 | |||
联合组 | 20 | 1587.68 | 399.41 | 796.20 | 236.43 |
Table 3
Repeated measures ANOVA results of balance test parameters"
变量 | 状态 | 平方和 | 自由度 | 均方 | F值 | P值 | |
---|---|---|---|---|---|---|---|
前后平均运动速度 | 睁眼 | 组内 | 1532.335 | 1 | 1532.335 | 96.618 | < 0.001 |
组间 | 104.697 | 3 | 34.899 | 0.568 | 0.638 | ||
组内×组间 | 259.020 | 3 | 86.340 | 5.444 | 0.002 | ||
闭眼 | 组内 | 4271.042 | 1 | 4271.042 | 156.688 | < 0.001 | |
组间 | 722.078 | 3 | 240.693 | 2.791 | 0.051 | ||
组内×组间 | 936.124 | 3 | 312.041 | 11.448 | < 0.001 | ||
左右平均运动速度 | 睁眼 | 组内 | 718.383 | 1 | 718.383 | 214.347 | < 0.001 |
组间 | 111.802 | 3 | 37.267 | 2.030 | 0.117 | ||
组内×组间 | 125.824 | 3 | 41.941 | 12.514 | < 0.001 | ||
闭眼 | 组内 | 999.850 | 1 | 999.850 | 101.486 | < 0.001 | |
组间 | 118.266 | 3 | 39.422 | 0.849 | 0.472 | ||
组内×组间 | 300.090 | 3 | 100.030 | 10.153 | < 0.001 | ||
运动椭圆面积 | 睁眼 | 组内 | 5318482.245 | 1 | 5318482.245 | 229.783 | < 0.001 |
组间 | 1106099.311 | 3 | 368699.770 | 3.728 | 0.015 | ||
组内×组间 | 671420.108 | 3 | 223806.703 | 9.669 | < 0.001 | ||
闭眼 | 组内 | 9979635.379 | 1 | 9979635.379 | 178.180 | < 0.001 | |
组间 | 2795024.526 | 3 | 931674.842 | 3.761 | 0.014 | ||
组内×组间 | 1908288.769 | 3 | 636096.256 | 11.357 | < 0.001 | ||
运动长度 | 睁眼 | 组内 | 8180971.854 | 1 | 8180971.854 | 424.792 | < 0.001 |
组间 | 986283.186 | 3 | 328761.062 | 4.004 | 0.011 | ||
组内×组间 | 436514.427 | 3 | 145504.809 | 7.555 | < 0.001 | ||
闭眼 | 组内 | 10629723.410 | 1 | 10629723.410 | 177.671 | < 0.001 | |
组间 | 2685057.951 | 3 | 895019.317 | 7.760 | < 0.001 | ||
组内×组间 | 1432780.813 | 3 | 477593.604 | 7.983 | < 0.001 |
Table 4
Post hoc LSD test results of balance test parameters"
变量 | 状态 | 组别 | 平均值差 | P值 | 95%CI | ||
---|---|---|---|---|---|---|---|
下限 | 上限 | ||||||
前后平均运动速度 | 睁眼 | 对照组 | 本体训练组 | 2.333 | 0.072 | -0.217 | 4.883 |
对照组 | 视觉剥夺组 | 2.983 | 0.022 | 0.433 | 5.533 | ||
对照组 | 联合组 | 5.583 | < 0.001 | 3.033 | 8.134 | ||
本体训练组 | 视觉剥夺组 | 0.650 | 0.613 | -1.901 | 3.201 | ||
本体训练组 | 联合组 | 3.251 | 0.013 | 0.701 | 5.801 | ||
视觉剥夺组 | 联合组 | 2.601 | 0.046 | 0.051 | 5.151 | ||
闭眼 | 对照组 | 本体训练组 | 6.741 | < 0.001 | 3.877 | 9.604 | |
对照组 | 视觉剥夺组 | 9.048 | < 0.001 | 6.185 | 11.912 | ||
对照组 | 联合组 | 12.280 | < 0.001 | 9.419 | 15.146 | ||
本体训练组 | 视觉剥夺组 | 2.308 | 0.113 | -0.555 | 5.171 | ||
本体训练组 | 联合组 | 5.542 | < 0.001 | 2.679 | 8.405 | ||
视觉剥夺组 | 联合组 | 3.234 | 0.027 | 0.371 | 6.097 | ||
左右平均运动速度 | 睁眼 | 对照组 | 本体训练组 | 1.742 | 0.033 | 0.144 | 3.339 |
对照组 | 视觉剥夺组 | 2.634 | 0.002 | 1.036 | 4.231 | ||
对照组 | 联合组 | 4.675 | < 0.001 | 3.077 | 6.273 | ||
本体训练组 | 视觉剥夺组 | 0.892 | 0.270 | -0.706 | 2.490 | ||
本体训练组 | 联合组 | 2.934 | < 0.001 | 1.336 | 4.531 | ||
视觉剥夺组 | 联合组 | 2.042 | 0.013 | 0.444 | 3.639 | ||
闭眼 | 对照组 | 本体训练组 | 1.884 | 0.125 | -0.532 | 4.302 | |
对照组 | 视觉剥夺组 | 3.466 | 0.006 | 1.051 | 5.883 | ||
对照组 | 联合组 | 5.867 | < 0.001 | 3.451 | 8.284 | ||
本体训练组 | 视觉剥夺组 | 1.583 | 0.196 | -0.834 | 3.999 | ||
本体训练组 | 联合组 | 3.983 | 0.002 | 1.567 | 6.399 | ||
视觉剥夺组 | 联合组 | 2.401 | 0.047 | -0.015 | 4.817 | ||
运动椭圆面积 | 睁眼 | 对照组 | 本体训练组 | 143.758 | 0.017 | 26.987 | 260.530 |
对照组 | 视觉剥夺组 | 211.566 | 0.001 | 94.795 | 328.338 | ||
对照组 | 联合组 | 390.299 | < 0.001 | 273.528 | 507.071 | ||
本体训练组 | 视觉剥夺组 | 67.808 | 0.251 | -48.963 | 184.579 | ||
本体训练组 | 联合组 | 246.541 | < 0.001 | 129.769 | 363.312 | ||
视觉剥夺组 | 联合组 | 178.733 | 0.003 | 61.962 | 295.504 | ||
闭眼 | 对照组 | 本体训练组 | 293.734 | 0.003 | 101.492 | 485.976 | |
对照组 | 视觉剥夺组 | 374.066 | < 0.001 | 181.824 | 566.308 | ||
对照组 | 联合组 | 653.467 | < 0.001 | 461.225 | 845.709 | ||
本体训练组 | 视觉剥夺组 | 80.332 | 0.408 | -111.909 | 272.574 | ||
本体训练组 | 联合组 | 359.733 | < 0.001 | 167.491 | 551.975 | ||
视觉剥夺组 | 联合组 | 279.401 | 0.005 | 87.159 | 471.643 | ||
运动长度 | 睁眼 | 对照组 | 本体训练组 | 101.567 | 0.058 | -3.702 | 206.835 |
对照组 | 视觉剥夺组 | 187.599 | 0.001 | 82.331 | 292.868 | ||
对照组 | 联合组 | 325.716 | < 0.001 | 220.448 | 430.985 | ||
本体训练组 | 视觉剥夺组 | 86.033 | 0.108 | -19.235 | 191.301 | ||
本体训练组 | 联合组 | 224.151 | < 0.001 | 118.882 | 329.418 | ||
视觉剥夺组 | 联合组 | 138.117 | 0.011 | 32.849 | 243.385 | ||
闭眼 | 对照组 | 本体训练组 | 255.325 | 0.003 | 92.446 | 418.204 | |
对照组 | 视觉剥夺组 | 393.415 | < 0.001 | 230.536 | 556.295 | ||
对照组 | 联合组 | 606.699 | < 0.001 | 443.821 | 769.579 | ||
本体训练组 | 视觉剥夺组 | 138.091 | 0.095 | -24.789 | 300.969 | ||
本体训练组 | 联合组 | 351.374 | < 0.001 | 188.495 | 514.254 | ||
视觉剥夺组 | 联合组 | 213.284 | 0.011 | 50.405 | 376.163 |
Table 5
Descriptive statistical results of clinical tests among four groups pre- and post-treatment"
变量 | 组别 | n | 治疗前 | 治疗后 | |||
---|---|---|---|---|---|---|---|
均值 | 标准差 | 均值 | 标准差 | ||||
BBS | 对照组 | 20 | 25.90 | 10.02 | 31.70 | 8.58 | |
本体训练组 | 20 | 26.40 | 10.71 | 36.35 | 6.97 | ||
视觉剥夺组 | 20 | 26.95 | 7.72 | 37.85 | 5.61 | ||
联合组 | 20 | 25.55 | 7.94 | 42.40 | 4.31 | ||
FMA-LE | 对照组 | 20 | 15.85 | 5.21 | 19.65 | 4.29 | |
本体训练组 | 20 | 17.05 | 5.41 | 22.65 | 3.98 | ||
视觉剥夺组 | 20 | 16.90 | 4.88 | 23.95 | 3.14 | ||
联合组 | 20 | 16.45 | 3.61 | 26.40 | 3.72 | ||
10MWT/s | 对照组 | 20 | 45.30 | 12.25 | 36.55 | 9.55 | |
本体训练组 | 20 | 43.16 | 15.93 | 30.37 | 10.93 | ||
视觉剥夺组 | 20 | 43.45 | 17.34 | 28.99 | 8.93 | ||
联合组 | 20 | 44.14 | 13.37 | 22.66 | 8.52 | ||
FGA | 对照组 | 20 | 8.95 | 1.64 | 11.85 | 1.49 | |
本体训练组 | 20 | 7.85 | 1.46 | 12.95 | 1.66 | ||
视觉剥夺组 | 20 | 8.70 | 2.05 | 13.85 | 1.81 | ||
联合组 | 20 | 8.25 | 2.29 | 15.90 | 1.71 |
Table 6
Repeated measures ANOVA results of clinical tests"
变量 | 平方和 | 自由度 | 均方 | F值 | P值 | |
---|---|---|---|---|---|---|
BBS | 组内 | 4730.625 | 1 | 4730.625 | 426.359 | < 0.001 |
组间 | 566.625 | 3 | 188.875 | 1.623 | 0.191 | |
组内×组间 | 623.125 | 3 | 207.708 | 18.720 | < 0.001 | |
FMA-LE | 组内 | 1742.400 | 1 | 1742.400 | 1034.954 | < 0.001 |
组间 | 288.825 | 3 | 96.275 | 2.665 | 0.054 | |
组内×组间 | 202.650 | 3 | 67.550 | 40.123 | < 0.001 | |
10MWT | 组内 | 8257.290 | 1 | 8257.290 | 221.902 | < 0.001 |
组间 | 1155.267 | 3 | 385.089 | 1.403 | 0.248 | |
组内×组间 | 846.906 | 3 | 282.302 | 7.586 | < 0.001 | |
FGA | 组内 | 1081.600 | 1 | 1081.600 | 694.564 | < 0.001 |
组间 | 77.825 | 3 | 25.942 | 5.258 | 0.002 | |
组内×组间 | 113.050 | 3 | 37.683 | 24.199 | < 0.001 |
Table 7
Post hoc LSD test results of clinical tests"
变量 | 组别 | 组别 | 平均值差 | P值 | 95%CI | |
---|---|---|---|---|---|---|
下限 | 上限 | |||||
BBS | 对照组 | 本体训练组 | -4.650 | 0.028 | -8.783 | -0.517 |
对照组 | 视觉剥夺组 | -6.150 | 0.004 | -10.283 | -2.017 | |
对照组 | 联合组 | -10.700 | < 0.001 | -14.833 | -6.567 | |
本体训练组 | 视觉剥夺组 | -1.501 | 0.472 | -5.633 | 2.633 | |
本体训练组 | 联合组 | -6.051 | 0.005 | -10.183 | -1.917 | |
视觉剥夺组 | 联合组 | -4.550 | 0.031 | -8.683 | -0.417 | |
FMA-LE | 对照组 | 本体训练组 | -3.001 | 0.015 | -5.397 | -0.603 |
对照组 | 视觉剥夺组 | -4.300 | 0.001 | -6.697 | -1.903 | |
对照组 | 联合组 | -6.750 | < 0.001 | -9.147 | -4.353 | |
本体训练组 | 视觉剥夺组 | -1.300 | 0.283 | -3.697 | 1.097 | |
本体训练组 | 联合组 | -3.750 | 0.003 | -6.147 | -1.353 | |
视觉剥夺组 | 联合组 | -2.450 | 0.045 | -4.847 | -0.053 | |
10MWT | 对照组 | 本体训练组 | 6.175 | 0.044 | 0.175 | 12.176 |
对照组 | 视觉剥夺组 | 7.551 | 0.014 | 1.551 | 13.551 | |
对照组 | 联合组 | 13.889 | < 0.001 | 7.888 | 19.889 | |
本体训练组 | 视觉剥夺组 | 1.376 | 0.649 | -4.625 | 7.376 | |
本体训练组 | 联合组 | 7.713 | 0.012 | 1.713 | 13.713 | |
视觉剥夺组 | 联合组 | 6.337 | 0.039 | 0.337 | 12.338 | |
FGA | 对照组 | 本体训练组 | -1.100 | 0.045 | -2.176 | -0.024 |
对照组 | 视觉剥夺组 | -2.001 | < 0.001 | -3.076 | -0.924 | |
对照组 | 联合组 | -4.050 | < 0.001 | -5.126 | -2.974 | |
本体训练组 | 视觉剥夺组 | -0.901 | 0.100 | -1.976 | 0.176 | |
本体训练组 | 联合组 | -2.950 | < 0.001 | -4.026 | -1.874 | |
视觉剥夺组 | 联合组 | -2.050 | < 0.001 | -3.126 | -0.974 |
[1] | MA Q, LI R, WANG L, et al. Temporal trend and attributable risk factors of stroke burden in China, 1990-2019: an analysis for the Global Burden of Disease Study 2019[J]. Lancet Public Health, 2021, 6(12): e897-e906. |
[2] |
LENDRAITIENĖ E, TAMOŠAUSKAITĖ A, PETRUŠEVIČIENĖ D, et al. Balance evaluation techniques and physical therapy in post-stroke patients: a literature review[J]. Neurol Neurochir Pol, 2017, 51(1): 92-100.
doi: S0028-3843(16)30211-0 pmid: 27884459 |
[3] | AWOSIKA O O, GARVER A, DRURY C, et al. Insufficiencies in sensory systems reweighting is associated with walking impairment severity in chronic stroke: an observational cohort study[J]. Front Neurol, 2023, 14: 1244657. |
[4] | GARAY-SÁNCHEZ A, MARCÉN-ROMÁN Y, FERRANDO-MARGELÍ M, et al. Effect of physiotherapy treatment with immersive virtual reality in subjects with stroke: a protocol for a randomized controlled trial[J]. Healthcare (Basel), 2023, 11(9): 1335. |
[5] | SYMEONIDOU E R, FERRIS D P. Intermittent visual occlusions increase balance training effectiveness[J]. Front Hum Neurosci, 2022, 16: 748930. |
[6] | SASAKI A, NAGAE H, FURUSAKA Y, et al. Visual deprivation's impact on dynamic posture control of trunk: a comprehensive sensing information analysis of neurophysiological mechanisms[J]. Sensors (Basel), 2024, 24(17): 5849. |
[7] | KIM Y W, MOON S J. Effects of treadmill training with the eyes closed on gait and balance ability of chronic stroke patients[J]. J Phys Ther Sci, 2015, 27(9): 2935-2938. |
[8] | APRILIYASARI R W, VAN TRUONG P, TSAI P S. Effects of proprioceptive training for people with stroke: a meta-analysis of randomized controlled trials[J]. Clin Rehabil, 2022, 36(4): 431-448. |
[9] | 中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国各类主要脑血管病诊断要点2019[J]. 中华神经科杂志, 2019, 52(9): 710-715. |
Chinese Society of Neurology, Chinese Stroke Society. Diagnostic criteria of cerebrovascular diseases in China (version 2019)[J]. Chin J Neurol, 2019, 52(9): 710-715. | |
[10] |
JEONG T, CHUNG Y. The effects of visual information deprivation and feedback balance training on balance in patients with stroke[J]. NeuroRehabilitation, 2024, 54(3): 435-448.
doi: 10.3233/NRE-230358 pmid: 38607770 |
[11] | BONAN I V, YELNIK A P, COLLE F M, et al. Reliance on visual information after stroke. Part II: effectiveness of a balance rehabilitation program with visual cue deprivation after stroke: a randomized controlled trial[J]. Arch Phys Med Rehabil, 2004, 85(2): 274-278. |
[12] |
VAN BLOEMENDAAL M, BOUT W, BUS S A, et al. Validity and reproducibility of the Functional Gait Assessment in persons after stroke[J]. Clin Rehabil, 2019, 33(1): 94-103.
doi: 10.1177/0269215518791000 pmid: 30084264 |
[13] | HÖTTING K, SHAREEF I, ROGGE A K, et al. Postural control depends on early visual experience[J]. J Vis, 2024, 24(9): 3. |
[14] | GERA G, CHESNUTT J, MANCINI M, et al. Inertial sensor-based assessment of central sensory integration for balance after mild traumatic brain injury[J]. Mil Med, 2018, 183(suppl 1): 327-332. |
[15] |
SIENKO K H, SEIDLER R D, CARENDER W J, et al. Potential mechanisms of sensory augmentation systems on human balance control[J]. Front Neurol, 2018, 9: 944.
doi: 10.3389/fneur.2018.00944 pmid: 30483209 |
[16] | MIHAI E E, MIHAI I V, BERTEANU M. Effectiveness of radial extracorporeal shock wave therapy and visual feedback balance training on lower limb post-stroke spasticity, trunk performance, and balance: a randomized controlled trial[J]. J Clin Med, 2021, 11(1): 147. |
[17] | BOLOGNINI N, RUSSO C, EDWARDS D J. The sensory side of post-stroke motor rehabilitation[J]. Restor Neurol Neurosci, 2016, 34(4): 571-586. |
[18] |
董平, 阚超杰, 郭川, 等. 不同感觉策略下老年人平衡控制的皮质激活特征[J]. 中国康复理论与实践, 2024, 30(7): 848-853.
doi: 10.3969/j.issn.1006-9771.2024.07.014 |
DONG P, KAN C J, GUO C, et al. Characteristics of cortical activation in balance control under different sensory strategies in the elderly[J]. Chin J Rehabil Theory Pract, 2024, 30(7): 848-853. | |
[19] |
KUPERS R, PTITO M. Compensatory plasticity and cross-modal reorganization following early visual deprivation[J]. Neurosci Biobehav Rev, 2014, 41: 36-52.
doi: 10.1016/j.neubiorev.2013.08.001 pmid: 23954750 |
[20] |
MOHAPATRA S, KRISHNAN V, ARUIN A S. The effect of decreased visual acuity on control of posture[J]. Clin Neurophysiol, 2012, 123(1): 173-182.
doi: 10.1016/j.clinph.2011.06.008 pmid: 21778109 |
[21] | 高天宇, 张孝权, 宿旺, 等. 视觉剥夺前后老年人单足站立平衡特征研究[J]. 中国康复医学杂志, 2020, 35(4): 427-433. |
GAO T Y, ZHANG X Q, SU W, et al. Research on the balance adjustment mechanism of single leg stance in aged people before and after visual deprivation[J]. Chin J Rehabil Med, 2020, 35(4): 427-433. | |
[22] | ZHANG Q, ZHANG L, HE W, et al. Case report: visual deprivation in Pusher syndrome complicated by hemispatial neglect after basal ganglia stroke[J]. Front Neurol, 2021, 12: 706611. |
[23] | LÜ Q, ZHANG J, PAN Y, et al. Somatosensory deficits after stroke: insights from MRI studies[J]. Front Neurol, 2022, 13: 891283. |
[24] | HES T, MILANI T L, KILPER A, et al. Immediate effects of wearing an ankle bandage on fine coordination, proprioception, balance and gait in the subacute phase of ankle sprains[J]. Life (Basel), 2024, 14(7): 810. |
[25] | 何泽佳, 恽晓萍, 宋桂芸, 等. 脑卒中患者踝关节本体感觉的差异性研究[J]. 中华物理医学与康复杂志, 2023, 45(7): 604-608. |
HE Z J, YUN X P, SONG G Y, et al. Ankle proprioception after a stroke[J]. Chin J Phys Med Rehabil, 2023, 45(7): 604-608. | |
[26] | YOU H, ZHANG H, LIU J, et al. Effect of balance training with Pro-Kin System on balance in patients with white matter lesions[J]. Medicine (Baltimore), 2017, 96(51): e9057. |
[27] | MAO Y, GAO Z, YANG H, et al. Influence of proprioceptive training based on ankle-foot robot on improving lower limbs function in patients after a stroke[J]. Front Neurorobot, 2022, 16: 969671. |
[28] |
JAYASINGHE S A L, SARLEGNA F R, SCHEIDT R A, et al. Somatosensory deafferentation reveals lateralized roles of proprioception in feedback and adaptive feedforward control of movement and posture[J]. Curr Opin Physiol, 2021, 19: 141-147.
doi: 10.1016/j.cophys.2020.10.005 pmid: 36569335 |
[29] | SYMEONIDOU E R, FERRIS D P. Visual occlusions result in phase synchrony within multiple brain regions involved in sensory processing and balance control[J]. IEEE Trans Neural Syst Rehabil Eng, 2023, 31: 3772-3780. |
[30] |
LUNGHI C, EMIR U E, MORRONE M C, et al. Short-term monocular deprivation alters GABA in the adult human visual cortex[J]. Curr Biol, 2015, 25(11): 1496-1501.
doi: 10.1016/j.cub.2015.04.021 pmid: 26004760 |
[31] |
CAMBIERI C, IACOVELLI E, GORI M C, et al. Effects of visual deprivation on primary motor cortex excitability: a study on healthy subjects based on repetitive transcranial magnetic stimulation[J]. Exp Brain Res, 2017, 235(7): 2059-2067.
doi: 10.1007/s00221-017-4945-0 pmid: 28365800 |
[32] | RIMBERT S, AL-CHWA R, ZAEPFFEL M, et al. Electroencephalographic modulations during an open- or closed-eyes motor task[J]. PeerJ, 2018, 6: e4492. |
[33] | MORASSO P. Integrating ankle and hip strategies for the stabilization of upright standing: an intermittent control model[J]. Front Comput Neurosci, 2022, 16: 956932. |
[34] | NAM S M, LEE D Y. Effects of visual cue deprivation balance training with head control on balance and gait function in stroke patients[J]. Medicina (Kaunas), 2022, 58(5): 629. |
[35] |
LIM D, PEI W, LEE J W, et al. Feasibility of using a depth camera or pressure mat for visual feedback balance training with functional electrical stimulation[J]. Biomed Eng Online, 2024, 23(1): 19.
doi: 10.1186/s12938-023-01191-y pmid: 38347584 |
[36] | ZHAI X, WU Q, LI X, et al. Effects of robot-aided rehabilitation on the ankle joint properties and balance function in stroke survivors: a randomized controlled trial[J]. Front Neurol, 2021, 12: 719305. |
[37] | SCHMIDT D, CARPES F P, MILANI T L, et al. Different visual manipulations have similar effects on quasi-static and dynamic balance responses of young and older people[J]. PeerJ, 2021, 9: e11221. |
[38] |
LI H, RODRÍGUEZ-NIETO G, CHALAVI S, et al. MRS-assessed brain GABA modulation in response to task performance and learning[J]. Behav Brain Funct, 2024, 20(1): 22.
doi: 10.1186/s12993-024-00248-9 pmid: 39217354 |
[39] |
HERTER T M, SCOTT S H, DUKELOW S P. Vision does not always help stroke survivors compensate for impaired limb position sense[J]. J Neuroeng Rehabil, 2019, 16(1): 129.
doi: 10.1186/s12984-019-0596-7 pmid: 31666135 |
[40] | CUPPONE A V, SQUERI V, SEMPRINI M, et al. Robot-assisted proprioceptive training with added vibro-tactile feedback enhances somatosensory and motor performance[J]. PLoS One, 2016, 11(10): e0164511. |
[41] |
RAICHIN A, SHKEDY RABANI A, SHMUELOF L. Motor skill training without online visual feedback enhances feedforward control[J]. J Neurophysiol, 2021, 126(5): 1604-1613.
doi: 10.1152/jn.00145.2021 pmid: 34525324 |
[1] | LIN Changsheng, CAO Yu, WANG Tong, DAI Wenjun, HOU Hong, HU Cuiqin, BAO Shilei, PANG Sufang. Effect of closed-chain exercise training on hemiplegic shoulder pain and shoulder joint stability in stroke patients: a study with ultrasound [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(3): 264-273. |
[2] | WANG Xiaojun, WANG Hani, YU Hong, LI Yuanmei, ZHOU Yuda. Effect of high-definition transcranial direct current stimulation combined with upper limb robot on upper limb dysfunction after ischemic stroke [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(2): 218-224. |
[3] | MA Wenwen, WEN Yanzheng, Manripati ROZI, CUI Boya, Suyinqimei . Effect of healthy side tilt training on balance function in patients with Pusher syndrome after stroke [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(2): 225-230. |
[4] | FAN Zhijiao, JIN Lanqi, HUANG Zhibin, LI Yige, YAO Sihan, MA Yubao. Effect of neuromuscular electrical stimulation on quadriceps muscle strength and walking for patients after anterior cruciate ligament reconstruction [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(2): 242-248. |
[5] | QIN Qing, LIU Ye, YE Haiyan, LI Chen, CHEN Di. Robot-assisted therapy for upper limb of stoke: a bibliometrics analysis [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(1): 85-98. |
[6] | ZHANG Lu, MA Jiangping, YANG Erli, CHEN Qiuhua, DONG Lijun, YIN Xiaobing. Application of cognitive-motor dual-task training in stroke: a bibliometrics analysis [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(9): 1034-1042. |
[7] | LUO Hong, XU Li. Effect of repetitive transcranial magnetic stimulation combined with repetitive peripheral magnetic stimulation on upper extremities motor function in patients with cerebral hemorrhage: a randomized controlled trial based on resting state-functional magenetic resonance imaging [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(9): 1060-1068. |
[8] | WANG Min, FANG Lantian, HUANG Chenyi. Effect of modified graded motor imagery on upper limb motor function for stroke patients: a randomized controlled trial [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(9): 1069-1073. |
[9] | XIE Dandan, CHEN Shanjia, LEI Lei, YU Guo, YU Jiahui, ZHAO Jiapei, HE Xiaokuo. Characteristics of brain activation during treadmill walking with visual feedback in healthy subjects and hemiplegic patients: a functional near infrared spectroscopy study [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(9): 1074-1081. |
[10] | LI Dong, ZHANG Hao, LIU Nan, WANG Xinyue, XU Miao. Effect of cognitive-motor dual-task training on balance function and gait in convalescent stroke patients: a randomized contolled trial [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(9): 1082-1091. |
[11] | ZHUANG Changhong, WANG Yufeng, HE Sijie, JIANG Tao, YE Jintao, ZHANG Tianfeng. Influence of functional ankle instability on balance and lower limb explosive power [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(9): 1107-1116. |
[12] | YU Tingting, CAI Fuliang, MIAO Guihua, GU Chen, PENG Yuan. Effect of structured therapy and education based on personal strength on ischemic stroke: a randomized controlled trial [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(8): 965-971. |
[13] | LIANG Tianjia, LONG Yaobin, LU Liyan, ZHOU Jinying, HUANG Fucai, HUANG Linpeng, WU Yingchao, LONG Yaoxiang, WEI Xiaocui, LIU Zhong. Effect of rope-assisted proprioceptive neuromuscular facilitation combined with rope-assisted brain-computer interface training on upper limb function in stroke patients with hemiplegia: a randomized controlled trial [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(8): 972-978. |
[14] | WANG Zhe, WAN Qin, HUANG Zhaoming, WANG Yongli, QIAN Hong. Characteristics of speech prosody function in adults with non-fluent aphasia after stroke [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(8): 979-992. |
[15] | DUAN Linru, ZHENG Jiejiao, CHEN Xi, LI Yan. Analysis of relevant factors for fall risk in stroke patients [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(7): 811-817. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|