Chinese Journal of Rehabilitation Theory and Practice ›› 2025, Vol. 31 ›› Issue (10): 1214-1226.doi: 10.3969/j.issn.1006-9771.2025.10.013
Previous Articles Next Articles
ZHAO Weijing1a(
), YOU Hong1a, TANG Zuohong1a, LI Yongping1b, WEN Mingming1b, LIU Hong2, BAO Juan2
Received:2025-05-13
Revised:2025-09-15
Published:2025-10-25
Online:2025-11-10
Contact:
ZHAO Weijing, E-mail: 29347170@qq.com
Supported by:CLC Number:
ZHAO Weijing, YOU Hong, TANG Zuohong, LI Yongping, WEN Mingming, LIU Hong, BAO Juan. Effect of visual feedback balance training combined with digital treadmill intervention on walking function in patients with ischemic stroke[J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(10): 1214-1226.
Table 1
Comparison of baseline data among three groups"
| 组别 | n | 性别(男/女)/n | 偏瘫侧(左/右)/n | 年龄/岁 | 病程/d | MoCA评分 | 体质量指数/(kg·m-2) |
|---|---|---|---|---|---|---|---|
| 对照组 | 30 | 16/14 | 18/12 | 67.07±7.01 | 103.93±33.83 | 26.97±1.47 | 23.70±2.49 |
| 跑台组 | 30 | 12/18 | 14/16 | 65.30±6.37 | 110.80±36.41 | 27.00±1.62 | 23.68±3.09 |
| 联合组 | 30 | 13/17 | 19/11 | 65.96±7.20 | 112.60±34.90 | 27.33±1.65 | 24.27±2.78 |
| χ2/F值 | 1.165 | 1.900 | 1.073 | 1.159 | 0.493 | 2.013 | |
| P值 | 0.559 | 0.387 | 0.397 | 0.331 | 0.612 | 0.800 |
Table 2
Descriptive statistical results of balance function among three groups pre- and post-treatment"
| 变量 | 组别 | n | 治疗前 | 治疗后 | ||||
|---|---|---|---|---|---|---|---|---|
| 均值 | 标准差 | 均值 | 标准差 | |||||
| BBS评分 | 对照组 | 30 | 34.03 | 2.98 | 40.20 | 3.02 | ||
| 跑台组 | 30 | 33.73 | 3.02 | 42.87 | 4.27 | |||
| 联合组 | 30 | 33.53 | 3.81 | 46.67 | 3.55 | |||
| Pro-Kin平衡测试 | 运动长度轨迹(睁眼)/mm | 对照组 | 30 | 644.40 | 79.57 | 565.47 | 80.06 | |
| 跑台组 | 30 | 649.13 | 76.88 | 507.33 | 47.06 | |||
| 联合组 | 30 | 649.93 | 76.55 | 441.37 | 29.59 | |||
| 运动长度轨迹(闭眼)/mm | 对照组 | 30 | 1180.77 | 146.94 | 1036.93 | 124.49 | ||
| 跑台组 | 30 | 1177.00 | 112.04 | 949.33 | 85.59 | |||
| 联合组 | 30 | 1128.33 | 118.51 | 843.67 | 105.85 | |||
| 运动椭圆面积(睁眼)/mm2 | 对照组 | 30 | 1504.57 | 137.62 | 1341.13 | 145.63 | ||
| 跑台组 | 30 | 1492.10 | 137.56 | 1210.03 | 117.28 | |||
| 联合组 | 30 | 1506.90 | 143.01 | 1118.13 | 115.10 | |||
| 运动椭圆面积(闭眼)/mm2 | 对照组 | 30 | 2001.50 | 116.71 | 1855.10 | 107.93 | ||
| 跑台组 | 30 | 2016.50 | 219.30 | 1678.07 | 251.91 | |||
| 联合组 | 30 | 2004.63 | 236.66 | 1421.50 | 192.24 | |||
Table 3
Repeated measures ANOVA results of balance function"
| 变量 | 效应 | 平方和 | 自由度 | 均方 | F值 | P值 | |
|---|---|---|---|---|---|---|---|
| BBS评分 | 组内 | 4042.272 | 1 | 4042.272 | 555.091 | < 0.001 | |
| 组间 | 270.811 | 2 | 135.406 | 8.048 | 0.001 | ||
| 组内×组间 | 366.678 | 2 | 183.339 | 25.176 | < 0.001 | ||
| Pro-Kin平衡测试 | 运动长度轨迹(睁眼) | 组内 | 921492.450 | 1 | 921492.450 | 488.873 | < 0.001 |
| 组间 | 105781.544 | 2 | 52890.772 | 7.230 | 0.001 | ||
| 组内×组间 | 126074. 033 | 2 | 63037.017 | 33.443 | < 0.001 | ||
| 运动长度轨迹(闭眼) | 组内 | 2152773.470 | 1 | 2152773.470 | 714.398 | < 0.001 | |
| 组间 | 462675.678 | 2 | 231337.839 | 9.484 | < 0.001 | ||
| 组内×组间 | 150555.278 | 2 | 75277.639 | 24.981 | < 0.001 | ||
| 运动椭圆面积(睁眼) | 组内 | 3480004.360 | 1 | 3480004.360 | 595.614 | < 0.001 | |
| 组间 | 376247.878 | 2 | 188123.939 | 6.341 | 0.003 | ||
| 组内×组间 | 381169.344 | 2 | 190584.672 | 32.619 | < 0.001 | ||
| 运动椭圆面积(闭眼) | 组内 | 5702764.010 | 1 | 5702764.010 | 438.568 | < 0.001 | |
| 组间 | 1418064.030 | 2 | 709032.017 | 11.150 | < 0.001 | ||
| 组内×组间 | 1437454.480 | 2 | 718727.239 | 55.273 | < 0.001 | ||
Table 4
Difference test results of balance function pre- and post-treatment"
| 变量 | 组别 | 治疗前后平均差值 | 平均值差标准差 | P值 | 95%CI | ||
|---|---|---|---|---|---|---|---|
| 下限 | 上限 | ||||||
| BBS评分 | 对照组 | 6.167 | 1.578 | < 0.001 | 5.578 | 6.756 | |
| 跑台组 | 9.133 | 4.732 | < 0.001 | 7.366 | 10.900 | ||
| 联合组 | 13.133 | 4.337 | < 0.001 | 11.514 | 14.753 | ||
| Pro-Kin平衡测试 | 运动长度轨迹(睁眼) | 对照组 | 536.367 | 157.624 | < 0.001 | 477.509 | 595.224 |
| 跑台组 | -141.800 | 57.135 | < 0.001 | -163.135 | -120.465 | ||
| 联合组 | -208.567 | 77.893 | < 0.001 | -237.652 | -179.481 | ||
| 运动长度轨迹(闭眼) | 对照组 | 471.467 | 129.604 | < 0.001 | 423.072 | 519.861 | |
| 跑台组 | -227.667 | 73.268 | < 0.001 | -255.025 | -200.308 | ||
| 联合组 | -284.667 | 94.351 | < 0.001 | -319.898 | -249.435 | ||
| 运动椭圆面积(睁眼) | 对照组 | 496.933 | 186.561 | < 0.001 | 427.270 | 566.596 | |
| 跑台组 | -282.067 | 103.042 | < 0.001 | -320.543 | -243.590 | ||
| 联合组 | -583.133 | 130.690 | < 0.001 | -437.567 | -339.966 | ||
| 运动椭圆面积(闭眼) | 对照组 | 513.967 | 180.149 | < 0.001 | 446.698 | 581.236 | |
| 跑台组 | -338.433 | 174.551 | < 0.001 | -403.612 | -273.255 | ||
| 联合组 | -583.133 | 201.914 | < 0.001 | -658.529 | -507.737 | ||
Table 5
Post-hoc LSD test results of balance function post-treatment among each group"
| 变量 | 组别 | 平均值差 | P值 | 95%CI | |||
|---|---|---|---|---|---|---|---|
| 下限 | 上限 | ||||||
| BBS评分 | 对照组 | 跑台组 | -2.667 | 0.006 | -4.537 | -0.797 | |
| 对照组 | 联合组 | -6.467 | < 0.001 | -8.337 | -4.597 | ||
| 跑台组 | 联合组 | -3.800 | < 0.001 | -5.670 | -1.930 | ||
| Pro-Kin平衡测试 | 运动长度轨迹(睁眼) | 对照组 | 跑台组 | 58.133 | < 0.001 | 29.255 | 87.012 |
| 对照组 | 联合组 | 124.100 | < 0.001 | 95.222 | 152.978 | ||
| 跑台组 | 联合组 | 65.967 | < 0.001 | 37.088 | 94.845 | ||
| 运动长度轨迹(闭眼) | 对照组 | 跑台组 | 87.600 | 0.002 | 32.944 | 142.256 | |
| 对照组 | 联合组 | 193.267 | < 0.001 | 138.611 | 247.922 | ||
| 跑台组 | 联合组 | 105.667 | < 0.001 | 51.011 | 160.322 | ||
| 运动椭圆面积(睁眼) | 对照组 | 跑台组 | 131.100 | < 0.001 | 66.034 | 196.166 | |
| 对照组 | 联合组 | 223.000 | < 0.001 | 157.934 | 288.066 | ||
| 跑台组 | 联合组 | 91.900 | 0.006 | 26.834 | 156.966 | ||
| 运动椭圆面积(闭眼) | 对照组 | 跑台组 | 177.033 | 0.001 | 77.845 | 276.222 | |
| 对照组 | 联合组 | 433.600 | < 0.001 | 334.411 | 532.789 | ||
| 跑台组 | 联合组 | 256.567 | < 0.001 | 157.378 | 355.756 | ||
Table 6
Descriptive statistical results of gait test among three groups pre- and post-treatment"
| 变量 | 组别 | n | 治疗前 | 治疗后 | ||||
|---|---|---|---|---|---|---|---|---|
| 均值 | 标准差 | 均值 | 标准差 | |||||
| POMA评分 | 对照组 | 30 | 18.03 | 2.63 | 20.33 | 2.64 | ||
| 跑台组 | 30 | 17.97 | 2.44 | 21.60 | 1.65 | |||
| 联合组 | 30 | 18.13 | 1.87 | 23.63 | 2.72 | |||
| 数字化跑台步态测试 | 步长/cm | 对照组 | 30 | 22.65 | 3.77 | 25.87 | 5.28 | |
| 跑台组 | 30 | 23.03 | 3.34 | 28.99 | 2.58 | |||
| 联合组 | 30 | 21.16 | 3.95 | 33.18 | 2.82 | |||
| 髋关节活动度(健侧)/° | 对照组 | 30 | 26.11 | 4.96 | 29.50 | 4.50 | ||
| 跑台组 | 30 | 25.15 | 5.14 | 32.04 | 4.91 | |||
| 联合组 | 30 | 24.89 | 4.92 | 39.03 | 2.74 | |||
| 髋关节活动度(患侧)/° | 对照组 | 30 | 20.07 | 3.04 | 24.94 | 3.08 | ||
| 跑台组 | 30 | 20.29 | 5.78 | 28.67 | 6.35 | |||
| 联合组 | 30 | 21.03 | 3.94 | 34.49 | 4.17 | |||
| 膝关节活动度(健侧)/° | 对照组 | 30 | 31.77 | 8.02 | 34.03 | 11.04 | ||
| 跑台组 | 30 | 32.06 | 6.35 | 41.07 | 5.42 | |||
| 联合组 | 30 | 30.84 | 5.51 | 45.93 | 5.08 | |||
| 膝关节活动度(患侧)/° | 对照组 | 30 | 23.58 | 4.68 | 29.20 | 3.77 | ||
| 跑台组 | 30 | 23.99 | 3.47 | 33.11 | 4.57 | |||
| 联合组 | 30 | 24.06 | 3.08 | 38.16 | 4.64 | |||
Table 7
Repeated measures ANOVA results of gait test"
| 变量 | 效应 | 平方和 | 自由度 | 均方 | F值 | P值 | |
|---|---|---|---|---|---|---|---|
| POMA评分 | 组内 | 653.606 | 1 | 653.606 | 310.081 | < 0.001 | |
| 组间 | 89.200 | 2 | 44.600 | 4.919 | 0.009 | ||
| 组内×组间 | 77.511 | 2 | 38.756 | 18.386 | < 0.001 | ||
| 数字化跑台步态测试 | 步长 | 组内 | 2246.493 | 1 | 2246.493 | 286.667 | < 0.001 |
| 组间 | 257.485 | 2 | 128.742 | 6.429 | 0.002 | ||
| 组内×组间 | 608.467 | 2 | 304.233 | 38.822 | < 0.001 | ||
| 髋关节活动度(健侧) | 组内 | 2980.705 | 1 | 2980.705 | 389.461 | < 0.001 | |
| 组间 | 583.208 | 2 | 291.604 | 8.407 | < 0.001 | ||
| 组内×组间 | 902.488 | 2 | 451.244 | 58.960 | < 0.001 | ||
| 髋关节活动度(患侧) | 组内 | 3566.141 | 1 | 3566.141 | 381.110 | < 0.001 | |
| 组间 | 846.133 | 2 | 423.066 | 19.319 | < 0.001 | ||
| 组内×组间 | 558.799 | 2 | 279.399 | 29.859 | < 0.001 | ||
| 膝关节活动度(健侧) | 组内 | 3473.369 | 1 | 3473.369 | 147.291 | < 0.001 | |
| 组间 | 936.110 | 2 | 468.055 | 5.818 | 0.004 | ||
| 组内×组间 | 1233.736 | 2 | 616.868 | 26.159 | < 0.001 | ||
| 膝关节活动度(患侧) | 组内 | 4158.247 | 1 | 4158.247 | 458.711 | < 0.001 | |
| 组间 | 669.148 | 2 | 334.574 | 13.776 | < 0.001 | ||
| 组内×组间 | 544.895 | 2 | 272.447 | 30.055 | < 0.001 | ||
Table 8
Difference test results of gait test pre- and post-treatment"
| 变量 | 组别 | 治疗前后平均差值 | 平均值差标准差 | P值 | 95%CI | ||
|---|---|---|---|---|---|---|---|
| 下限 | 上限 | ||||||
| POMA评分 | 对照组 | 4.700 | 0.952 | < 0.001 | 4.344 | 5.056 | |
| 跑台组 | 3.633 | 1.732 | < 0.001 | 2.987 | 4.280 | ||
| 联合组 | 5.500 | 2.910 | < 0.001 | 4.414 | 6.586 | ||
| 数字化跑台步态测试 | 步长 | 对照组 | 3.220 | 4.709 | 0.001 | 1.462 | 4.978 |
| 跑台组 | 5.957 | 2.734 | < 0.001 | 4.936 | 6.978 | ||
| 联合组 | 12.020 | 4.167 | < 0.001 | 10.464 | 13.576 | ||
| 髋关节活动度(健侧) | 对照组 | 3.388 | 1.580 | < 0.001 | 2.798 | 3.978 | |
| 跑台组 | 6.887 | 4.458 | < 0.001 | 5.223 | 8.552 | ||
| 联合组 | 14.141 | 4.853 | < 0.001 | 12.329 | 15.953 | ||
| 髋关节活动度(患侧) | 对照组 | 4.871 | 2.820 | < 0.001 | 3.818 | 5.923 | |
| 跑台组 | 8.381 | 4.289 | < 0.001 | 6.779 | 9.982 | ||
| 联合组 | 13.455 | 5.459 | < 0.001 | 11.417 | 15.493 | ||
| 膝关节活动度(健侧) | 对照组 | 3.732 | 6.785 | 0.005 | 1.199 | 6.265 | |
| 跑台组 | 9.006 | 6.767 | < 0.001 | 6.479 | 11.533 | ||
| 联合组 | 15.085 | 4.044 | < 0.001 | 13.575 | 16.595 | ||
| 膝关节活动度(患侧) | 对照组 | 5.617 | 2.511 | < 0.001 | 4.679 | 6.555 | |
| 跑台组 | 9.123 | 4.894 | < 0.001 | 7.296 | 10.950 | ||
| 联合组 | 14.098 | 4.913 | < 0.001 | 12.264 | 15.933 | ||
Table 9
Post-hoc LSD test results of gait test post-treatment among each group"
| 变量 | 组别 | 平均值差 | P值 | 95%CI | |||
|---|---|---|---|---|---|---|---|
| 下限 | 上限 | ||||||
| POMA评分 | 对照组 | 跑台组 | -1.267 | 0.043 | -2.494 | -0.040 | |
| 对照组 | 联合组 | -3.300 | < 0.001 | -4.526 | -2.074 | ||
| 跑台组 | 联合组 | -2.033 | 0.001 | -3.260 | -0.807 | ||
| 数字化跑台步态测试 | 步长 | 对照组 | 跑台组 | -3.117 | 0.002 | -5.051 | -1.183 |
| 对照组 | 联合组 | -7.310 | < 0.001 | -9.244 | -5.376 | ||
| 跑台组 | 联合组 | -4.193 | < 0.001 | -6.127 | -2.260 | ||
| 髋关节活动度(健侧) | 对照组 | 跑台组 | -2.540 | 0.020 | -4.673 | -0.407 | |
| 对照组 | 联合组 | -9.528 | < 0.001 | -11.662 | -7.395 | ||
| 跑台组 | 联合组 | -6.988 | < 0.001 | -9.122 | -4.855 | ||
| 髋关节活动度(患侧) | 对照组 | 跑台组 | -3.727 | < 0.001 | -5.495 | -1.959 | |
| 对照组 | 联合组 | -9.549 | < 0.001 | -11.317 | -7.781 | ||
| 跑台组 | 联合组 | -5.821 | < 0.001 | -7.589 | -4.053 | ||
| 膝关节活动度(健侧) | 对照组 | 跑台组 | -7.035 | 0.001 | -10.978 | -3.093 | |
| 对照组 | 联合组 | -11.893 | < 0.001 | -15.836 | -7.951 | ||
| 跑台组 | 联合组 | -4.858 | 0.016 | -8.801 | -0.915 | ||
| 膝关节活动度(患侧) | 对照组 | 跑台组 | -3.909 | 0.001 | -6.140 | -1.678 | |
| 对照组 | 联合组 | -8.959 | < 0.001 | -11.189 | -6.727 | ||
| 跑台组 | 联合组 | -5.049 | < 0.001 | -7.280 | -2.818 | ||
Table 10
Descriptive statistical results of lower-limb function among three groups pre- and post-treatment"
| 变量 | 组别 | n | 治疗前 | 治疗后 | |||
|---|---|---|---|---|---|---|---|
| 均值 | 标准差 | 均值 | 标准差 | ||||
| TUGT/s | 对照组 | 30 | 45.92 | 5.15 | 41.43 | 5.62 | |
| 跑台组 | 30 | 46.43 | 4.88 | 37.80 | 4.86 | ||
| 联合组 | 30 | 44.86 | 5.86 | 31.78 | 4.03 | ||
| FMA-LE评分 | 对照组 | 30 | 14.90 | 2.52 | 17.63 | 2.27 | |
| 跑台组 | 30 | 15.07 | 2.73 | 19.97 | 3.11 | ||
| 联合组 | 30 | 14.73 | 2.93 | 23.83 | 3.14 | ||
Table 11
Repeated measures ANOVA results of lower-limb function"
| 变量 | 效应 | 平方和 | 自由度 | 均方 | F值 | P值 |
|---|---|---|---|---|---|---|
| TUGT | 组内 | 3382.687 | 1 | 3382.687 | 348.839 | < 0.001 |
| 组间 | 918.911 | 2 | 459.456 | 10.850 | < 0.001 | |
| 组内×组间 | 553.652 | 2 | 276.826 | 28.548 | < 0.001 | |
| FMA-LE评分 | 组内 | 1400.022 | 1 | 1400.022 | 458.534 | < 0.001 |
| 组间 | 275.678 | 2 | 137.839 | 10.893 | < 0.001 | |
| 组内×组间 | 314.344 | 2 | 157.172 | 51.477 | < 0.001 |
Table 12
Difference test results of lower-limb function pre- and post-treatment"
| 变量 | 组别 | 治疗前后平均差值 | 平均值差标准差 | P值 | 95%CI | |
|---|---|---|---|---|---|---|
| 下限 | 上限 | |||||
| TUGT | 对照组 | -4.487 | 2.811 | < 0.001 | -5.536 | -3.437 |
| 跑台组 | -8.453 | 4.931 | < 0.001 | -10.294 | -6.612 | |
| 联合组 | -13.070 | 5.096 | < 0.001 | -14.973 | -11.167 | |
| FMA-LE评分 | 对照组 | 2.733 | 1.081 | < 0.001 | 2.330 | 3.137 |
| 跑台组 | 4.900 | 2.074 | < 0.001 | 4.126 | 5.674 | |
| 联合组 | 9.100 | 3.585 | < 0.001 | 7.761 | 10.439 | |
Table 13
Post-hoc LSD test results of lower-limb function post-treatment among each group"
| 变量 | 组别 | 平均值差 | P值 | 95%CI | ||
|---|---|---|---|---|---|---|
| 下限 | 上限 | |||||
| TUGT | 对照组 | 跑台组 | 3.453 | 0.007 | 0.950 | 5.957 |
| 对照组 | 联合组 | 9.648 | < 0.001 | 7.144 | 12.151 | |
| 跑台组 | 联合组 | 6.194 | < 0.001 | 3.691 | 8.698 | |
| FMA-LE评分 | 对照组 | 跑台组 | -2.333 | 0.002 | -3.806 | -0.861 |
| 对照组 | 联合组 | -6.200 | < 0.001 | -7.672 | -4.728 | |
| 跑台组 | 联合组 | -3.867 | < 0.001 | -5.339 | -2.394 | |
Table 14
Comparison of FAC grades among three groups pre- and post-treatment"
| 组别 | n | 治疗前/n | 治疗后/n | Z值 | P值 | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 | 0 | 1 | 2 | 3 | 4 | 5 | |||||
| 对照组 | 30 | 0 | 0 | 10 | 12 | 8 | 0 | 0 | 0 | 5 | 10 | 15 | 0 | -1.971 | 0.049 | |
| 跑台组 | 30 | 0 | 0 | 9 | 17 | 4 | 0 | 0 | 0 | 2 | 9 | 18 | 1 | -3.986 | < 0.001 | |
| 联合组 | 30 | 0 | 0 | 6 | 16 | 8 | 0 | 0 | 0 | 0 | 5 | 21 | 4 | -4.605 | < 0.001 | |
| H值 | 1.620 | 11.108 | ||||||||||||||
| P值 | 0.445 | 0.004 | ||||||||||||||
| [1] | SAINI V, GUADA L, YAVAGAL D. Global epidemiology of stroke and access to acute ischemic stroke interventions[J]. Neurology, 2021, 97(20 Suppl 2): S6-S16. |
| [2] | 王拥军, 李子孝, 谷鸿秋, 等. 中国卒中报告2020(中文版)(1)[J]. 中国卒中杂志, 2022, 17(5): 433-447. |
| WANG Y J, LI Z X, GU H Q, et al. China Stroke Statistics 2020 (1)[J]. Chin J Stroke, 2022, 17(5): 433-447. | |
| [3] |
BERNHARDT J, CORBETT D, DUKELOW S, et al. The international stroke recovery and rehabilitation alliance[J]. Lancet Neurol, 2023, 22(4): 295-296.
doi: 10.1016/S1474-4422(23)00072-8 pmid: 36931801 |
| [4] | HUGUES A, DI-MARCO J, JANIAUD P, et al. Effects of physical therapies aiming directly or indirectly at the recovery of balance after stroke. A meta-analysis[J]. Ann Phys Rehabil Med, 2018, 61(7): e216-e217. |
| [5] |
ZHANG M, YOU H, ZHANG H, et al. Effects of visual feedback balance training with the Pro-kin system on walking and self-care abilities in stroke patients[J]. Medicine, 2020, 99(39): e22425.
doi: 10.1097/MD.0000000000022425 |
| [6] |
ZHAO W J, YOU H, JIANG S, et al. Effect of Pro-kin visual feedback balance training system on gait stability in patients with cerebral small vessel disease[J]. Medicine, 2019, 98(7): e14503.
doi: 10.1097/MD.0000000000014503 |
| [7] |
YOU H, ZHANG H, LIU J, et al. Effect of balance training with Pro-kin system on balance in patients with white matter lesions[J]. Medicine, 2017, 96(51): e9057.
doi: 10.1097/MD.0000000000009057 |
| [8] | 赵玮婧, 李永平, 尤红, 等. 重复经颅磁刺激联合视觉反馈平衡训练对帕金森病患者平衡及步态的影响[J]. 中国康复医学杂志, 2024, 39(9): 1327-1331. |
| [9] | 聂志强, 张灵虎, 门艳军, 等. 等速肌力训练对脑卒中患者步行功能的影响[J]. 中国康复, 2020, 35(6): 299-302. |
| NIE Z Q, ZHANG L H, MEN Y J, et al. Effects of digital treadmill training on walking ability of stroke patients[J]. Chin J Rehabil, 2020, 35(6): 299-302. | |
| [10] | 宋作新, 刘鑫, 田地, 等. 基于数字化跑台的康复训练对不完全性脊髓损伤患者步行能力的影响[J]. 中华物理医学与康复杂志, 2023, 45(11): 1003-1007. |
| SONG Z X, LIU X, TIAN D, et al. Using a digital treadmill can improve the walking ability of patients with an incomplete spinal cord injury better than simple rehabilitation[J]. Chin J Phys Med Rehabil, 2023, 45(11): 1003-1007. | |
| [11] | 冀磊磊, 阚秀丽, 周云, 等. 数字化跑台训练对脑卒中患者步行能力的影响[J]. 生物医学工程与临床, 2020, 24(4): 446-449. |
| JI L L, KAN X L, ZHOU Y, et al. Effects of digital treadmill training on walking ability of stroke patients[J]. Biomed Eng Clin Med, 2020, 24(4): 446-449. | |
| [12] | 中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国各类主要脑血管病诊断要点2019[J]. 中华神经科杂志, 2019, 52(9): 710-715. |
| Chinese Society of Neurology, Chinese Stroke Society. Diagnostic criteria of cerebrovascular diseases in China (version 2019)[J]. Chin J Neurol, 2019, 52(9): 710-715. | |
| [13] | 倪朝民. 神经康复学[M]. 北京: 人民卫生出版社, 2013: 43. |
| NI C M. Neurorehabilitation[M]. Beijing: People's Medical Publishing House, 2013: 43. | |
| [14] |
金振华, 陈玲, 刘勇. 基于自我效能理论的数字化步行功能训练对脑卒中患者下肢功能的效果[J]. 中国康复理论与实践, 2023, 29(5): 504-509.
doi: 10.3969/j.issn.1006-9771.2023.05.002 |
| JIN Z H, CHEN L, LIU Y. Effect of self-efficacy-based intelligent walking training on function of lower extremities of stroke patients[J]. Chin J Rehabil Theory Pract, 2023, 29(5): 504-509. | |
| [15] | BERG K O, WOOD-DAUPHINEE S L, WILLIAMS J I, et al. Measuring balance in the elderly: validation of an instrument[J]. Can J Public Health, 1992, 83(Suppl 2): S7-S11. |
| [16] | 王晓春, 王俊华, 谢水平. 视觉反馈平衡训练仪训练对脑卒中后平衡及步行能力影响的分析[J]. 循证医学, 2019, 19(2): 91-101. |
| WANG X C, WANG J H, XIE S P. Effect of visual-feedback balance training on balance and walking ability after stroke: a meta-analysis[J]. J Evidence-Based Med, 2019, 19(2): 91-101. | |
| [17] |
TINETTI M E. Performance-Oriented Assessment of Mobility problems in elderly patients[J]. Am Geriatr Soc, 1986, 34(2): 119-126.
doi: 10.1111/jgs.1986.34.issue-2 |
| [18] | 肖晗, 沈显山, 王娟, 等. 数字化跑台在中国人中步态时空参数的信度研究[J]. 现代医学与健康研究(电子版), 2019, 3(17): 130-134. |
| [19] | MATHIAS S, NAYAK U S, ISAACS B. Balance in elderly patients: the "Get-Up and Go" Test[J]. Arch Phys Med Rehabil, 1986, 67(6): 387-389. |
| [20] |
HSIEH Y W, HSUEH I P, CHOU Y T, et al. Development and validation of a short form of the Fugl-Meyer motor scale in patients with stroke[J]. Stroke, 2007, 38(11): 3052-3054.
doi: 10.1161/STROKEAHA.107.490730 |
| [21] |
MEHRHOLZ J, WAGNER K, RUTTE K, et al. Predictive vaidity and responsiveness of the functional ambulation category in hemiparetic patients after stroke[J]. Arch Phys Med Rehabil, 2007, 88(10): 1314-1319.
doi: 10.1016/j.apmr.2007.06.764 |
| [22] |
LEUNG S O, CHAN C C, SHAH S. Development of a Chinese version of the modified Barthel Index: validity and reliability[J]. Clin Rehabil, 2007, 21(10): 912-922.
doi: 10.1177/0269215507077286 |
| [23] |
BENSOUSSAN L, MESURE S, VITON J M, et al. Kinematic and kinetic asymmetries in hemiplegic patients' gait initiation patterns[J]. J Rehabil Med, 2006, 38(5): 287-294.
doi: 10.1080/16501970600694859 pmid: 16931458 |
| [24] |
AN C M, SON Y L, PARK Y H, et al. Relationship between dynamic balance and spatiotemporal gait symmetry in hemiplegic patients with chronic stroke[J]. Hong Kong Physiother J, 2017, 37(9): 19-24.
doi: 10.1016/j.hkpj.2017.01.002 |
| [25] | 许梦雅, 谭琳琳, 鲁评, 等. 前庭康复训练对脑卒中患者平衡功能及步行能力的影响[J]. 中国实用神经疾病杂志, 2024, 27(6): 758-761. |
| XU M Y, TAN L L, LU P, et al. Effect of vestibular rehabilitation on balance function and walking ability in stroke patients[J]. Chin J Pract Nerv Dis, 2024, 27(6): 758-761. | |
| [26] |
SZOPA A, DOMAGALSKA-SZOPA M, LASEK-BAL A, et al. The link between international shift asymmetry and gait disturbances in chronic hemiparetic stroke patients[J]. Clin Interv Aging, 2017, 12(1): 2055-2063.
doi: 10.2147/CIA |
| [27] |
KIM S H, HUIZENGA D E, HANDZIC I, et al. Relearning functional and symmetric walking after stroke using a wearable device: a feasibility study[J]. J Neuroeng Rehabil, 2019, 16(1): 106.
doi: 10.1186/s12984-019-0569-x pmid: 31455358 |
| [28] |
HYUN S J, LEE J, LEE B H. The effects of sit-to-stand training combined with real-time visual feedback on strength, balance, gait ability, and quality of life in patients with stroke: a randomized controlled trial[J]. Int J Environ Res Public Health, 2021, 18(22): 12229.
doi: 10.3390/ijerph182212229 |
| [29] |
王亚囡, 张通, 杜雪晶, 等. 脑卒中偏瘫患者步态参数与平衡功能的关系[J]. 中国康复理论与实践, 2022, 28(1): 38-43.
doi: 10.3969/j.issn.1006-9771.2022.01.006 |
| WANG Y N, ZHANG T, DU X J, et al. Correlation between gait parameters and balance in stroke hemiplegic patients[J]. Chin J Rehabil Theory Pract, 2022, 28(1): 38-43. | |
| [30] |
王路, 陈艳, 苏久龙, 等. 三维运动平台训练对脑卒中患者平衡与步行功能的效果[J]. 中国康复理论与实践, 2023, 29(4): 485-490.
doi: 10.3969/j.issn.1006-9771.2023.04.015 |
| WANG L, CHEN Y, SU J L, et al. Effect of three-dimensional motion platform training on balanceand walking function of stroke patients[J]. Chin J Rehabil Theory Pract, 2023, 29(4): 485-490. | |
| [31] |
MORAT M, BAKKER J, HAMMES V, et al. Effects of stepping exergames under stable versus unstable conditions on balance and strength in healthy community-dwelling older adults: a three-armed randomized controlled trial[J]. Exp Gerontol, 2019, 127: 110719.
doi: 10.1016/j.exger.2019.110719 |
| [32] | 赵雅宁, 郝正玮, 李建民, 等. 下肢康复训练机器人对缺血性脑卒中偏瘫患者平衡及步行功能的影响[J]. 中国康复医学杂志, 2012, 27(11): 1015-1020. |
| ZHAO Y N, HAO Z W, LI J M, et al. The effect of Lokomat lower limb gait training rehabilitation robot on balance function and walking ability in hemiplegic patients after ischemic stroke[J]. Chin J Rehabil Med, 2012, 27(11): 1015-1020. | |
| [33] |
SEO J S, YANG H S, JUNG S, et al. Effect of reducing assistance during robot-assisted gait training on step length asymmetry in patients with hemiplegic stroke: a randomized controlled pilot trial[J]. Medicine, 2018, 97(33): e11792.
doi: 10.1097/MD.0000000000011792 |
| [34] |
于春洋, 刘然, 赵依双, 等. 虚拟现实联合跑台训练对脑卒中患者平衡功能和步行能力的效果[J]. 中国康复理论与实践, 2024, 30(3): 310-315.
doi: 10.3969/j.issn.1006-9771.2024.03.008 |
| YU C Y, LIU R, ZHAO Y S, et al. Effect of virtual reality treadmill training on balance and gait in stroke patients[J]. Chin J Rehabil Theory Pract, 2024, 30(3): 310-315. | |
| [35] |
DEMECO A, ZOLA L, FRIZZIERO A, et al. Immersive virtual reality in post-stroke rehabilitation: a systematic reviews[J]. Sensors (Basel), 2023, 23(3): 1712.
doi: 10.3390/s23031712 |
| [36] |
LEE S H, KIM J, LEE H J, et al. A wearable ankle-assisted robot for improving gait function and pattern in stroke patients[J]. J Neuroeng Rehabil, 2025, 22(1): 89.
doi: 10.1186/s12984-025-01624-w |
| [37] |
KUNDI M K, SPENCE N. Efficacy of mirror therapy on lower limb motor recovery, balance and gait in subacute and chronic stroke: a systematic review[J]. Physiother Res Int, 2023, 28(2): e1997.
doi: 10.1002/pri.v28.2 |
| [38] |
苏盼盼, 叶朋, 卢倩, 等. 视觉剥夺训练联合本体感觉训练对脑卒中偏瘫患者平衡功能的效果[J]. 中国康复理论与实践, 2025, 31(3): 254-263.
doi: 10.3969/j.issn.1006-9771.2025.03.002 |
| SU P P, YE P, LU Q, et al. Effect of visual deprivation training combined with proprioceptive training on balance in hemiplegic patients after stroke[J]. Chin J Rehabil Theory Pract, 2025, 31(3): 254-263. | |
| [39] | MOON Y, BAE Y. The effect of backward walking observational training on gait parameters and balance in chronic stroke: randomized controlled studys[J]. Eur J Phys Rehabil Med, 2022, 58(1): 9-15. |
| [40] |
徐冬艳, 王卫宁, 潘力, 等. 基于丰富环境理论的多感官反馈步态训练对脑卒中患者步行功能的效果[J]. 中国康复理论与实践, 2024, 30(5): 526-534.
doi: 10.3969/j.issn.1006-9771.2024.05.005 |
| XU D Y, WANG W N, PAN L, et al. Effect of enriched environment theory-based multisensory feedback gait training on walking function in stroke patients[J]. Chin J Rehabil Theory Pract, 2024, 30(5): 526-534. | |
| [41] |
MAO Y, CHEN P, LI L, et al. Virtual reality training improves balance function[J]. Neural Regen Res, 2014, 9(17): 1628-1634.
doi: 10.4103/1673-5374.141795 pmid: 25368651 |
| [42] |
MAREK S, DOSENBACH N U F. The frontoparietal network: function, electrophysiology, and importance of individual precision mapping[J]. Dialogues Clin Neurosci, 2018, 20(2): 133-140.
doi: 10.31887/DCNS.2018.20.2/smarek |
| [43] |
OLAFSON E, RUSSELLO G, JAMISON K W, et al. Frontoparietal network activation is associated with motor recovery in ischemic stroke patients[J]. Commun Biol, 2022, 5(1): 993.
doi: 10.1038/s42003-022-03950-4 pmid: 36131012 |
| [44] |
钟连超, 魏鸿瞻, 董心, 等. 步态适应性训练在脑卒中康复中应用的研究进展[J]. 中国康复理论与实践, 2021, 27(1): 54-59.
doi: 10.3969/j.issn.1006-9771.2021.01.008 |
| ZHONG L C, WEI H Z, DONG X, et al. Advance in gait adaptability training for rehabilitation of stroke (review)[J]. Chin J Rehabil Theory Pract, 2021, 27(1): 54-59. | |
| [45] |
张子华, 庞博, 赵盼超, 等. 步态测量评价研究进展:步态指数的应用[J]. 中国康复理论与实践, 2020, 26(2): 210-214.
doi: 10.3969/j.issn.1006-9771.2020.02.012 |
| ZHANG Z H, PANG B, ZHAO P C, et al. Progress in gait measurement and evaluation:application of gait index (review)[J]. Chin J Rehabil Theory Pract, 2020, 26(2): 210-214. | |
| [46] |
刘朗, 刘勇国, 李巧勤, 等. 脑卒中患者运动功能自动化评定研究进展[J]. 中国康复理论与实践, 2020, 26(9): 1028-1032.
doi: 10.3969/j.issn.1006-9771.2020.09.006 |
| LIU L, LIU Y G, LI Q Q, et al. Advance in automatic assessment of motor function for patients with stroke (review)[J]. Chin J Rehabil Theory Pract, 2020, 26(9): 1028-1032. | |
| [47] | 吴毅. 经颅超声刺激在脑卒中后神经功能康复中的研究进展[J]. 中国康复医学杂志, 2024, 39(8): 1081-1083. |
| [48] |
何惠芳, 龚翔, 王喜荟, 等. 经颅超声刺激在神经康复中应用的文献计量分析[J]. 中国康复理论与实践, 2024, 30(12): 1420-1427.
doi: 10.3969/j.issn.1006-9771.2024.12.007 |
| HE H F, GONG X, WANG X H, et al. Application of transcranial ultrasound stimulation in neurorehabilitation: a bibliometric analysis[J]. Chin J Rehabil Theory Pract, 2024, 30(12): 1420-1427. | |
| [49] | 赵焕, 殷其勇, 陈和木, 等. 经颅超声刺激联合低频神经肌肉电刺激对脑卒中患者认知和运动功能的改善作用[J]. 中华行为医学与脑科学杂志, 2025, 34(1): 36-42. |
| ZHAO H, YIN Q Y, CHEN H M, et al. The improvement effect of transcranial ultrasound stimulation combined with low-frequency neuromuscular electrical stimulation on cognitive and motor function in patients with stroke[J]. Chin J Behav Med Brain Sci, 2025, 34(1): 36-42. |
| [1] | ZOU Congcong, WANG Xiaojun, MA Jinrong, LU Shangbo, DING Yong, WANG Hani, SONG Jianfei. Effect of transcutaneous auricular vagus nerve stimulation combined with dual-task training on upper limb function in patients with ischemic stroke [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(5): 513-519. |
| [2] | WANG Xiaojun, WANG Hani, YU Hong, LI Yuanmei, ZHOU Yuda. Effect of high-definition transcranial direct current stimulation combined with upper limb robot on upper limb dysfunction after ischemic stroke [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(2): 218-224. |
| [3] | WANG Yue, ZHANG Tong, LIU Huilin, LIU Jianhua, ZHU Xiaomin, ZHAO Jun. Effect of external attentional focus strategy on walking function after stroke [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(10): 1206-1213. |
| [4] | YU Tingting, CAI Fuliang, MIAO Guihua, GU Chen, PENG Yuan. Effect of structured therapy and education based on personal strength on ischemic stroke: a randomized controlled trial [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(8): 965-971. |
| [5] | XU Dongyan, WANG Weining, PAN Li, LIU Gang, LIU Jiapeng, WU Yi, ZHU Yulian. Effect of enriched environment theory-based multisensory feedback gait training on walking function in stroke patients [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(5): 526-534. |
| [6] | TIAN Pei, FAN Rongfu, WANG Hongyan, PENG Mingli. Pathogenic bacteria distribution, clinical features and risk factors of urinary tract infection in patients with ischemic stroke [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(10): 1179-1186. |
| [7] | DENG Ting, CHEN Jingmian, LIU Xiaomeng, YAO Xiaohua, LIU Lushan, HE Wei, ZHANG Tong, LU Haitao. Risk factors of stroke-associated pneumonia for patients with mild to moderate acute ischemic stroke [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(6): 708-713. |
| [8] | ZHAO Yaxian, TANG Zhiqing, SUN Xinting, WANG Rongrong, LIU Tianhao, ZHANG Hao. Effects of different intensity of wearable lower limb rehabilitation robot-assisted training on lower limb function after stroke [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(5): 497-503. |
| [9] | WANG Lu, CHEN Yan, SU Jiulong, DU Zhiwei, YU Rui, HU Nan, ZENG Yiming, YU Mianxuan, HONG Jing. Effect of three-dimensional motion platform training on balance and walking function of stroke patients [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(4): 485-490. |
| [10] | WEI Tianqi, LUO Jiaqi, LI Zijuan, WU Xueliang, XU Panpan, ZHANG Yanmei, ZHAO Xiaomeng, WU Qinfeng. Effect of augmented reality training based on enriched environment on walking function after stroke [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(12): 1439-1445. |
| [11] | ZHANG Chunlong, LIU Fuliang, SHANG Na, LI Fang, LIU Huizhen. Association of serum adiponectin and high sensitivity C-reactive protein levels to short-term outcome in patients with acute ischemic stroke [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(10): 1221-1226. |
| [12] | HAN Kaiyue,LIU Guangliang,SU Wenlong,TANG Zhiqing,ZHANG Hao. Effects of intelligent aerobic bicycle training on ischemic stroke patients at different disease courses [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(7): 822-827. |
| [13] | LAI Haifang,GU Lin,ZONG Ya,NIU Chuanxin,XIE Qing. Prediction of short-term outcome after subacute ischemic stroke using multiple layer perceptron neural network [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(3): 335-339. |
| [14] | ZHU Hui,XIA Youbing,GONG Zunke,WANG Shiyan,MA Ke,YAN Jinqiu. Effects of high-frequency repetitive transcranial magnetic stimulation on central facial paralysis after ischemic stroke [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(2): 199-203. |
| [15] | Na WANG,Pei-lan LI,Lu-shan LIU,Feng-rong WANG. Prediction of Short- and Long-term Death in Patients with Acute Ischemic Stroke Using Various Scoring Systems [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2021, 27(3): 256-260. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
||