1 CorbynZ. Statistics: a growing global burden [J]. Nature, 2014, 510(7506): S2-S3. 2 SimonettiG, StefaniniM, KondaD, et al. Endovascular management of acute stroke [J]. J Cardiovasc Surg, 2013, 54(1): 101-114. 3 AlbersG W, GoyalM, JahanR, et al. Ischemic core and hypoperfusion volumes predict infarct size in SWIFT PRIME [J]. Ann Neurol, 2016, 79(1): 76-89. 4 LiuT J, ZhangJ C, GaoX Z, et al. Effect of sevoflurane on the ATPase activity of hippocampal neurons in a rat model of cerebral ischemia-reperfusion injury via the cAMP-PKA signaling pathway [J]. Kaohsiung J Med Sci, 2018, 34(1): 22-33. 5 LiW, PanR, QiZ, et al. Current progress in searching for clinically useful biomarkers of blood-brain barrier damage following cerebral ischemia [J]. Brain Circ, 2018, 4(4): 145-152. 6 StreitW J, CondeJ R, FendriekS E, et al. Role of microglia in the central nervous system's immune response [J]. Neurol Res, 2005, 27(7): 685-691. 7 LiuW, TangY, FengJ. Cross talk between activation of microglia and astrocytes in pathological conditions in the central nervous system [J]. Life Sci, 2011, 89(5-6): 141-146. 8 KettenmannH, HanischU K, NodaM, et al. Physiology of microglia [J]. Physiol Rev, 2011, 91(2): 461-553. 9 ParkhurstC N, GanW B. Microglia dynamics and function in the CNS [J]. Curr Opin Neurobiol, 2010, 20(5): 595-600. 10 ParadaE, CasasA I, Palomino-AntolinA, et al. Early toll-like receptor 4 blockade reduces ROS and inflammation triggered by microglial pro-inflammatory phenotype in rodent and human brain ischaemia models [J]. Br J Pharmacol, 2019, 176(15): 2764-2779. 11 JungY S, LeeS W, ParkJ H, et al. Electroacupuncture preconditioning reduces ROS generation with NOX4 down-regulation and ameliorates blood-brain barrier disruption after ischemic stroke [J]. J Biomed Sci, 2016, 23(1): 32. 12 GuoM, ZhangL, LiuH, et al. A metabolomic strategy to screen the prototype components and metabolites of Qingkailing injection in rat urine by high-performance liquid chromatography with tandem mass spectrometry [J]. J Sep Sci, 2014, 37(20): 2844-2850. 13 黄德仁,梁军寿,吕小亮,等. 清开灵联合脑蛋白水解物治疗脑梗死的临床观察[J]. 齐齐哈尔医学院学报, 2014, 35(9): 1264-1265. 14 孙良明,程发峰,王雪茜,等. 清开灵注射液治疗急性中风的系统评价和Meta分析[J]. 中国中医急症, 2016, 25(5): 772-776, 857. 15 SerlinY, OferJ, Ben-ArieG, et al. Blood-brain barrier leakage [J]. Stroke, 2019, 50(5): 1266-1269. 16 田子健,杨楠,杨蕾琪. 缺血再灌注后血脑屏障通透性改变的研究进展[J]. 中国医药指南, 2011, 9(23): 222-223. 17 AbdullahiW, TripathiD, RonaldsonP T. Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection [J]. Am J Physiol Cell Physiol, 2018, 315(3): C343-C356. 18 KimJ Y, KimN, YenariM A. Mechanisms and potential therapeutic applications of microglial activation after brain injury [J]. CNS Neurosci Ther, 2015, 21(4): 309-319. 19 PunP B, LuJ, MoochhalaS. Involvement of ROS in BBB dysfunction [J]. Free Radic Res, 2009, 43(4): 348-364. 20 ManaL, WangS, ZhuH, et al. Qingkailing suppresses the activation of BV2 microglial cells by inhibiting hypoxia/reoxygenation-induced inflammatory responses [J]. Evid Based Complement Alternat Med, 2014, 2014: 1-8. 21 KnottA B, Bossy-WetzelE. Nitric oxide in health and disease of the nervous system [J]. Antioxid Redox Signal, 2009, 11(3): 541-554. 22 GuY, ZhengG, XuM, et al. Caveolin-1 regulates nitric oxide mediated matrix metalloproteinases activity and blood-brain barrier permeability in focal cerebral ischemia [J]. J Neurochem, 2012, 120(1): 147-156. 23 MohammadiM T, DehghaniG A. Nitric oxide as a regulatory factor for aquaporin-1 and 4 gene expression following brain ischemia/reperfusion injury in rat [J]. Pathol Res Pract, 2015, 211(1): 43-49. 24 AnttilaJ E, WhitakerK W, WiresE S, et al. Role of microglia in ischemic focal stroke and recovery: focus on Toll-like receptors [J]. Prog Neuropsychopharmacol Biol Psychiatry, 2017, 79(PtA): 3-14. 25 Tajalli-NezhadS, KarimianM, BeyerC, et al. The regulatory role of Toll-like receptors after ischemic stroke: neurosteroids as TLR modulators with the focus on TLR2/4 [J]. Cell Mol Life Sci, 2019, 76(3): 523-537. 26 NalamoluK R, SmithN J, ChelluboinaB, et al. Prevention of the severity of post-ischemic inflammation and brain damage by simultaneous knockdown of toll-like receptors 2 and 4 [J]. Neuroscience, 2018, 373: 82-91. 27 GaoW, ZhaoZ, YuG, et al. VEGI attenuates the inflammatory injury and disruption of blood-brain barrier partly by suppressing the TLR4/NF-κB signaling pathway in experimental traumatic brain injury [J]. Brain Res, 2015, 1622: 230-239. 28 LvY, LiuW, RuanZ, et al. Myosin IIA regulated tight junction in oxygen glucose-deprived brain endothelial cells via activation of TLR4/PI3K/Akt/JNK1/2/14-3-3ε/NF-κB/MMP9 signal transduction pathway [J]. Cell Mol Neurobiol, 2019, 39(2): 301-319. 29 RochfortK D, CollinsL E, MurphyR P, et al. Downregulation of blood-brain barrier phenotype by proinflammatory cytokines involves NADPH oxidase-dependent ROS generation: consequences for interendothelial adherens and tight junctions [J]. PLoS One, 2014, 9(7): e101815. 30 WangY, FanX, TangT, et al. Rhein and rhubarb similarly protect the blood-brain barrier after experimental traumatic brain injury via gp91phox subunit of NADPH oxidase/ROS/ERK/MMP-9 signaling pathway [J]. Sci Rep, 2016, 6(1): 37098. 31 高永红,王珊,玛娜璐璐,等. 清开灵对小胶质细胞BV2缺氧再复氧损伤gp~(91phox)表达的影响[J]. 现代生物医学进展, 2014, 14(35): 6807-6809, 6817. 32 ItohM, FuruseM, MoritaK, et al. Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins [J]. J Cell Biol, 1999, 147(6): 1351-1363. 33 JiaoH, WangZ, LiuY, et al. Specific role of tight junction proteins claudin-5, occludin, and ZO-1 of the blood-brain barrier in a focal cerebral ischemic insult [J]. J Mol Neurosci, 2011, 44(2): 130-139. |