《Chinese Journal of Rehabilitation Theory and Practice》 ›› 2021, Vol. 27 ›› Issue (5): 574-582.doi: 10.3969/j.issn.1006-9771.2021.05.010
Previous Articles Next Articles
Li-qun WANG1,2,Ri-zhao PANG2,Jian-cheng LIU2,An-ren ZHANG3()
Received:
2020-12-21
Revised:
2021-02-19
Published:
2021-05-25
Online:
2021-05-26
Contact:
An-ren ZHANG
E-mail:1518526780@qq.com
Supported by:
CLC Number:
Li-qun WANG,Ri-zhao PANG,Jian-cheng LIU,An-ren ZHANG. Effect of Targeting Mitochondria on Spinal Cord Injury: A Systematic Review Based on Animal Experiments[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2021, 27(5): 574-582.
"
作用机制 | 在脊髓损伤中的体现 | 相关药物 |
---|---|---|
替代性生物能源 | 脊髓损伤后,由于氧化损伤会造成一些线粒体基质中可用的关键线粒体酶活性降低或失活,如丙酮酸脱氢酶,是一种产生乙酰辅酶A的关键酶,乙酰辅酶A是柠檬酸循环和生成ATP合成的电子供体所必需的生物能源,而脊髓损伤后丙酮酸脱氢酶活性的显著降低减少了柠檬酸循环中可用的乙酰辅酶A[ | ALC |
抗氧化 | 脊髓损伤后活性氧的形成增加,超出抗氧化剂系统的中和能力,促使强氧化剂过氧亚硝酸盐生成增加,诱导线粒体内一氧化氮合酶的活化,还可以触发细胞膜脂质过氧化,造成线粒体功能障碍。因此需要开发抗氧化剂靶向线粒体治疗脊髓损伤 | α-生育酚、Neu2000、米诺环素、痿证中药方 |
抑制形成mPTP | 脊髓损伤会造成线粒体内膜电位的破坏和mPTP的形成,从而导致细胞坏死和死亡,加剧损伤。抑制mPTP的形成促进线粒体功能 | NIM811 |
抗凋亡 | mPTP的开放导致线粒体外膜破裂,累积活性氧和许多凋亡相关蛋白(如细胞色素C、凋亡诱导因子、SMAC/Diablo)释放到细胞质中。这会导致多种形式的程序性细胞死亡,如凋亡 | 利拉鲁肽、痿证中药方 |
增强线粒体的生物发生 | 线粒体生物合成(mitochondrial biogenesis, MB)是指线粒体的修复、生长和分裂,涉及调控多种线粒体DNA编码基因的多种途径的复杂网络。受损的MB可能导致线粒体和细胞功能障碍。过氧化物酶体增殖物激活的受体γ共激活因子(peroxisomal proliferator γ coactivator, PGC-1α)是MB的主要调节剂[ | LY344864、福莫特罗 |
"
功能 | 相关评定方法或指标 |
---|---|
运动功能 | ①BBB评分(Basso-Beattie-Bresnahan Locomotor Scale, BBB)[ |
组织病理学 | ①HE染色(观察脊髓组织形态学结构);②铬花青染色[ |
抗氧化功能 | ①丙二醛(malondialdehyde, MDA);②超氧化物歧化酶(superoxide dismutase, SOD);③谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px);④过氧化氢酶(catalase, CAT) |
抗凋亡功能 | ①TUNEL染色;②凋亡相关蛋白和基因[ |
增强线粒体生物发生 | ①损伤部位的线粒体DNA和蛋白质含量;②线粒体生物发生相关蛋白[ |
"
纳入研究 | 动物种属 | 体质量(g) | n | 脊髓损伤动物模型 | 干预措施 | |
---|---|---|---|---|---|---|
实验组 | 对照组 | |||||
Patel等[ | 雌性Sprague-Dawley大鼠 | 200~250 | 132 | T10挫伤(Infinite Horizons脊髓打击器,力度200 kdyn) | ALC(术后15 min、30 min、60 min,腹腔注射300 mg/kg,干预3 h后处死) | 生理盐水 |
沈娟等[ | 雌性Sprague-Dawley大鼠 | 200~240 | 64 | T10挫伤(HI-0400脊髓打击器,力度200 kdyn) | ALC(术后30 min内腹腔注射100 mg/kg、200 mg/kg、300 mg/kg,每天1次,连续7 d,之后每周1次,至术后第5周) | 生理盐水 |
Cordero等[ | 雌性Sprague-Dawley大鼠 | - | 60 | T9~T10挫伤(NYU脊髓打击器,12.5 mm高处释放10 g杆对脊髓进行重量冲击) | α-生育酚(术前8周,补充51 IU/g的α-生育酚在常规饮食中) | 常规饮食 |
Springer等[ | 雌性Long-Evans大鼠 | 225~250 | 18 | T10挫伤(Infinite Horizons脊髓打击器,力度120 kdyn) | Neu2000(术后10 min腹腔注射单剂量50 mg/kg或在此基础上,再每24 h施用25 mg/kg,持续6 d) | 生理盐水 |
Morsy等[ | 雄性Sprague-Dawley大鼠 | 150~200 | 50 | 脊髓缺血再灌注损伤(剖腹手术,在分叉上初夹住腹主动45 min,释放夹钳48 h再灌注) | α-生育酚(术后肌肉注射600 mg/kg,每周2次,持续6周) | 安慰剂 |
Aras等(2015)[ | 雄性Wistar大鼠 | 200~300 | 38 | T9挫伤(10 g重物5 cm高度垂直打击) | 米诺环素(术后1 h和24 h经口服用3 mg/kg、30 mg/kg、90 mg/kg,然后处死) | 空白对照和不同剂量相互对照 |
洪建仁等[ | 雄性Sprague-Dawley大鼠 | 200~250 | 36 | T10挫伤(Allen's法:将10 g重物5 cm高度垂直打击) | 利拉鲁肽(术后即刻在硬膜内给药12 μg/100 g) | 生理盐水 |
吕鹏等[ | 雄性Sprague-Dawley大鼠 | 225~275 | 30 | T10挫伤(改良Allen法:10 g打击锤放置从2.5 cm高度垂直打击) | 痿证中药方(术后灌胃给药,按成人用量的1/60×大鼠体质量×10,每天1次,药量2 ml,连续 30 d) | 空白对照 |
Springer等[ | 雌性Long-Evans大鼠 | 225~250 | 56 | T10挫伤(Infinite Horizons脊髓打击器,力度200 kdyn) | NIM811(术后1 h、12 h、24 h经口管饲单剂量10 mg/ml、20 mg/ml、40 mg/ml) | 生理盐水和不同剂量相互对照 |
Simmons等[ | 雌性C57bl/6J小鼠 | - | 28 | T11挫伤(IH-0400打击器,力度200 kdyn) | LY344864(术后1 h腹腔注射,2 mg/kg,每天1次,持续21 d) | 0.5%二甲基亚砜盐水 |
Scholpa等[ | 雌性C57Bl/6小鼠 | - | 36 | T11挫伤(IH-0400打击器,力度80 kdyn) | 福莫特罗(术后8 h腹腔注射,每天0.1 mg/kg,持续48 d | 1%二甲基亚砜盐水 |
"
纳入研究 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 条目符合率 |
---|---|---|---|---|---|---|---|---|---|---|---|
Patel等[ | + | + | 0 | + | 0 | + | + | + | + | + | 8/10 |
沈娟等[ | + | + | 0 | + | 0 | 0 | 0 | + | + | + | 6/10 |
Cordero等[ | + | + | + | + | + | + | + | + | + | + | 10/10 |
Springer等[ | + | + | + | + | + | + | + | — | 0 | + | 8/10 |
Morsy等[ | + | + | + | + | + | + | + | + | + | + | 10/10 |
Aras等(2015)[ | + | + | 0 | + | 0 | 0 | 0 | — | + | + | 5/10 |
洪建仁等[ | + | + | 0 | + | 0 | + | 0 | + | + | + | 7/10 |
吕鹏等[ | + | + | + | + | + | + | + | + | + | + | 10/10 |
Springer等[ | + | + | + | + | + | + | + | + | + | + | 10/10 |
Simmons等[ | + | + | + | + | + | 0 | 0 | — | + | + | 7/10 |
Scholpa等[ | + | + | + | + | + | + | + | + | + | + | 10/10 |
"
结局指标 | 纳入研究 | 方法学限制 | 相关性 | 结果一致性 | 数据充分性 | 总体 评价 |
---|---|---|---|---|---|---|
运动功能 | 9项[ | 9项研究中,2项存在选择、实施和失访偏倚,3项测量存在偏倚 | 9项研究纳入标准与拟解决问题基本一致 | 9项研究均报告运动功能改善 | 9个研究均进行定量描述,但使用的评定方法,数据的测量时间点和单位不一致,无法进行合并分析 | 高 |
脊髓组织病理学 | 8项[ | 8项研究中,3项存在选择和实施偏倚,3项测量存在偏倚 | 8项研究纳入标准与拟解决问题基本一致 | 8项研究报告受损组织面积减少和残存组织面积增多,5项进行定量分析 | 8项研究中,5项研究进行定量描述,但使用的测量方法,数据的测量时间点和单位不一致,无法进行合并分析 | 高 |
抗氧化功能 | 6项[ | 6项研究中,2项存在选择、实施、测量和报告偏倚 | 6项研究纳入标准与拟解决问题基本一致 | 6项研究报告抗氧化能力增强 | 6项研究进行定量描述,但具体功能指标,数据的测量时间点和单位不一致,无法进行合并分析 | 中 |
抗凋亡功能 | 2项[ | 2项研究均存在选择、实施和测量偏倚 | 6项研究纳入标准与拟解决问题基本一致 | 2项研究报告抗凋亡能力增强 | 2项研究进行定量描述,但具体功能指标,数据的测量时间点和单位不一致,无法进行合并分析 | 低 |
增强线粒体生物发生 | 3项[ | 3项研究中,1项存在选择、实施、测量和失访偏倚 | 6项研究纳入标准与拟解决问题基本一致 | 3项研究报告线粒体生物发生增强 | 3项研究进行定量描述,但具体功能指标,数据的测量时间点和单位不一致,无法进行合并分析 | 低 |
1 | SCHOLPA N E, SCHNELLMANN R G. Mitochondrial-based therapeutics for the treatment of spinal cord injury: mitochondrial biogenesis as a potential pharmacological target [J]. J Pharmacol Exp Ther, 2017, 363(3): 303-313. |
2 | KINNALLY K W, PEIXOTO P M, RYU S Y, et al. Is mPTP the gatekeeper for necrosis, apoptosis, or both? [J]. Biochim Biophys Acta, 2011, 1813(4): 616-622. |
3 | TURTLE J D, HENWOOD M K, STRAIN M M, et al. Engaging pain fibers after a spinal cord injury fosters hemorrhage and expands the area of secondary injury [J]. Exp Neurol, 2019, 311: 115-124. |
4 | ANJUM A, YAZID M D, FAUZI DAUD M, et al. Spinal cord injury: pathophysiology, multimolecular interactions, and underlying recovery mechanisms[J]. Int J Mol Sci, 2020, 21(20): 7533. |
5 | BAUER T M, MURPHY E. Role of mitochondrial calcium and the permeability transition pore in regulating cell death [J]. Circ Res, 2020, 126(2): 280-293. |
6 | HALL E D, WANG J A, BOSKEN J M, et al. Lipid peroxidation in brain or spinal cord mitochondria after injury [J]. J Bioenerg Biomembr, 2016, 48(2):169-174. |
7 | SIMMONS E C, SCHOLPA N E, SCHNELLMANN R G. Mitochondrial biogenesis as a therapeutic target for traumatic and neurodegenerative CNS diseases [J]. Exp Neurol, 2020, 329: 113309. |
8 | GOLPICH M, AMINI E, MOHAMED Z, et al. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: pathogenesis and treatment [J]. CNS Neurosci Ther, 2017, 23(1): 5-22. |
9 | BADHIWALA J H, WILSON J R, FEHLINGS M G. Global burden of traumatic brain and spinal cord injury [J]. Lancet Neurol, 2019, 18(1): 24-25. |
10 | AHUJA C S, MOTHE A, KHAZAEI M, et al. The leading edge: emerging neuroprotective and neuroregenerative cell-based therapies for spinal cord injury [J]. Stem Cells Transl Med, 2020, 9(12): 1509-1530. |
11 | YAMAZAKI K, KAWABORI M, SEKI T, et al. Clinical trials of stem cell treatment for spinal cord injury [J]. Int J Mol Sci, 2020, 21(11): 3994. |
12 | SONG Y H, AGRAWAL N K, GRIFFIN J M, et al. Recent advances in nanotherapeutic strategies for spinal cord injury repair [J]. Adv Drug Deliv Rev, 2019, 148: 38-59. |
13 | RAMER L M, RAMER M S, BRADBURY E J. Restoring function after spinal cord injury: towards clinical translation of experimental strategies [J]. Lancet Neurol, 2014, 13(12): 1241-1256. |
14 | NEGANOVA M E, ALEKSANDROVA Y R, NEBOGATIKOV V O, et al. Promising molecular targets for pharmacological therapy of neurodegenerative pathologies [J]. Acta Naturae, 2020, 12(3): 60-80. |
15 | NORAT P, SOLDOZY S, SOKOLOWSKI J D, et al. Mitochondrial dysfunction in neurological disorders: Exploring mitochondrial transplantation [J]. NPJ Regen Med, 2020, 5(1): 22. |
16 | CEWEN M L, SULLIVAN P G, RABCHEVSKY A G, et al. Targeting mitochondrial function for the treatment of acute spinal cord injury [J]. Neurotherapeutics, 2011, 8(2): 168-179. |
17 | SIMMONS E C, SCHOLPA N E, SCHNELLMANN R G. Mitochondrial biogenesis as a therapeutic target for traumatic and neurodegenerative CNS diseases [J]. Exp Neurol, 2020, 329: 113309. |
18 | HU J, LANG Y, CAO Y, et al. The neuroprotective effect of tetramethylpyrazine against contusive spinal cord injury by activating PGC-1α in rats [J]. Neurochem Res, 2015, 40(7): 1393-1401. |
19 | ZENG H, LIU N, YANG Y Y, et al. Lentivirus-mediated downregulation of α-synuclein reduces neuroinflammation and promotes functional recovery in rats with spinal cord injury [J]. J Neuroinflammation, 2019, 16(1): 283. |
20 | HAYASHI N, HIMI N, NAKAMURA-MARUYAMA E, et al. Improvement of motor function induced by skeletal muscle contraction in spinal cord-injured rats [J]. Spine J, 2019, 19(6): 1094-1105. |
21 | BROMMER B, HE M, ZHANG Z, et al. Improving hindlimb locomotor function by non-invasive AAV-mediated manipulations of propriospinal neurons in mice with complete spinal cord injury [J]. Nat Commun, 2021, 12(1): 781. |
22 | FAGAN C, KIERNAN J A. Certification procedures used by the Biological Stain Commission for eriochrome cyanine R (C.I. 43820, Mordant blue 3) [J]. Biotech Histochem, 2020, 95(5): 396-402. |
23 | PRAKASH Y S, SMITHSON K G, SIECK G C, et al. Application of the Cavalieri principle in volume estimation using laser confocal microscopy [J]. Neuroimage, 1994, 1(4): 325-333. |
24 | Carneiro B A, El-Deiry W S. Targeting apoptosis in cancer therapy [J]. Nat Rev Clin Oncol, 2020, 17(7): 395-417. |
25 | SCHOLPA N E, WILLIAMS H, WANG W, et al. Pharmacological stimulation of mitochondrial biogenesis using the food and drug administration-approved β2-adrenoreceptor agonist formoterol for the treatment of spinal cord injury [J]. J Neurotrauma, 2019, 36(6): 962-972. |
26 | 陶功财,张楠,尚志忠,等. 评估动物实验偏倚风险的SYRCLE工具实例解读[J].中国循证心血管医学杂志, 2019, 11(3): 292-295, 300. |
TAO G C, ZHANG N, SHANG Z Z, et al. Interpretation on examples of SYRCLE' tool for interviewing risk of bias in animal experimentation [J]. Chin J Evid Based Cardiovasc Med, 2019, 11(3): 292-295, 300. | |
27 | 拜争刚,刘少堃,黄崇斐,等. 定性系统评价证据分级工具——CERQual简介[J]. 中国循证医学杂志, 2015, 15(12): 1465-1470. |
BAI Z G, LIU S K, HUANG C F, et al. An introduction of quality classification tool for qualitative evidence: CERQual [J]. Chin J Evid Based Med, 2015, 15(12): 1465-1470. | |
28 | PATEL S P, SULLIVAN P G, LYTTLE T S, et al. Acetyl-L-carnitine ameliorates mitochondrial dysfunction following contusion spinal cord injury [J]. J Neurochem, 2010, 114(1): 291-301. |
29 | 沈娟,张雪峰,郝琴,等. 乙酰左旋肉碱对大鼠脊髓损伤的神经保护作用及其机制[J]. 中国应用生理学杂志, 2019, 35(5): 438-442, 481. |
SHEN J, ZHANG X F, HAO Q, et al. Effects of acetyl-L-carnitine on the recovery of hindlimb movement after spinal cord injury in rats and its mechamism [J]. Chin J Appl Physiol, 2019, 35(5): 438-442, 481. | |
30 | CORDERO K, CORONEL G G, SERRANO-ILLÁN M, et al. Effects of dietary vitamin E supplementation in bladder function and spasticity during spinal cord injury [J]. Brain Sci, 2018, 8(3): 38. |
31 | SPRINGER J E, RAO R R, LIM H R, et al. The functional and neuroprotective actions of Neu2000, a dual-acting pharmacological agent, in the treatment of acute spinal cord injury [J]. J Neurotrauma, 2010, 27(1): 139-149. |
32 | MORSY M D, MOSTAFA O A, HASSAN W N. A potential protective effect of alpha-tocopherol on vascular complication in spinal cord reperfusion injury in rats [J]. J Biomed Sci, 2010, 17(1): 55. |
33 | ARAS M, ALTAS M, MOTOR S, et al. Protective effects of minocycline on experimental spinal cord injury in rats [J]. Injury, 2015, 46(8): 1471-1474. |
34 | 洪建仁,任翠花,姜砚劼,等. 利拉鲁肽通过抑制线粒体依赖性凋亡及缺氧诱导因子1α表达对脊髓损伤的保护作用及其机制[J]. 中国中医骨伤科杂志, 2020, 28(11): 1-5. |
HONG J R, REN C H, JIANG Y J, et al. Liraglutide protects spinal cord Injury via suppressing mitochondrial-dependent apoptosis and HIF-1α expression [J]. Chin J Trad Med Tram Orthop, 2020, 28(11): 1-5. | |
35 | 吕鹏,蒋林哲,姚辉. 痿证中药方抑制线粒体内质网应激减轻大鼠脊髓损伤[J].实用中医内科杂志, 2021, 35(1): 70-73, 143. |
LÜ P, JIANG L Z, YAO H. Wei Syndrome recipe inhibits mitochondrial endoplasmic reticulum stress and alleviates of spinal cord injury rat model [J]. J Prac Trad Chin Med, 2021, 35(1): 70-73, 143. | |
36 | SPRINGER J E, VISAVADIYA N P, SULLIVAN P G, et al. Post-injury treatment with NIM811 promotes recovery of function in adult female rats after spinal cord contusion: a dose-response study [J]. J Neurotrauma, 2018, 35(3): 492-499. |
37 | SIMMONS E C, SCHOLPA N E, CLEVELAND K H, et al. 5-hydroxytryptamine 1F receptor agonist induces mitochondrial biogenesis and promotes recovery from spinal cord injury [J]. J Pharmacol Exp Ther, 2020, 372(2): 216-223. |
38 | SCHOLPA N E, SIMMONS E C, TILLEY D G, et al. β2-adrenergic receptor-mediated mitochondrial biogenesis improves skeletal muscle recovery following spinal cord injury [J]. Exp Neurol, 2019, 322: 113064. |
39 | LIU D, HUA J, DONG Q R, et al. X-ray therapy promotes structural regeneration after spinal cord injury in a rat model [J]. J Orthop Surg Res, 2016, 11: 6. |
40 | XIE C, LI X, FANG L, et al. Effects of athermal shortwave diathermy treatment on somatosensory evoked potentials and motor evoked potentials in rats with spinal cord injury [J]. Spine (Phila Pa 1976), 2019, 44(13): E749-E758. |
41 | MINAKOV A N, CHERNOV A S, ASUTIN D S, et al. Experimental models of spinal cord injury in laboratory rats [J]. Acta Nature, 2018, 10(3): 4-10. |
42 | NARDONE R, FLOREA C, HÖLLER Y, et al. Rodent, large animal and non-human primate models of spinal cord injury [J]. Zoology (Jena), 2017, 123: 101-114. |
[1] | LUO Lihua, WANG Yusheng, LI Jianfeng, DONG Jige. Effect of early postoperative comprehensive rehabilitation on children and youth with supracondylar fracture of humerus complicated with ulnar nerve injury [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 105-110. |
[2] | WANG Hangyu, GE Keke, FAN Yonghong, DU Lilu, ZOU Min, FENG Lei. Effect of active music therapy on cognitive function for older adults with cognitive impairment: a systematic review based on ICD-11 and ICF [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 36-43. |
[3] | WEN Jianing, JIN Qiuyan, ZHANG Qi, LI Jie, SI Qi. Effect of cognitively engaging physical activity on developing executive function of children and adolescents: a systematic review based on ICF [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 44-53. |
[4] | GE Keke, FAN Yonghong, WANG Hangyu, DU Lilu, LI Changjiang, ZOU Min. Health benefit of mindfulness intervention for older adults with insomnia disorders: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 54-60. |
[5] | LIU Dong, XU Zihan, LI Jiang, JU Ping. Effect of high-frequency repetitive transcranial magnetic stimulation in M1 region combined with dorsolateral prefrontal cortex on electroencephalogram θ frequency band amplitude of patients with neuropathic pain after spinal cord injury [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 87-94. |
[6] | ZHANG Jingya, ZOU Min, SUN Hongwei, SUN Changlong, ZHU Juntong. Effect of psychological intervention on anxiety or depression in children and adolescents with hearing impairment: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1004-1011. |
[7] | WANG Junyu, YANG Yong, YUAN Xun, XIE Ting, ZHUANG Jie. Effect of high-intensity interval training on executive function for healthy children and adolescents: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1012-1020. |
[8] | WEI Xiaowei, YANG Jian, WEI Chunyan. Psychological and behavioral benefits of adapted yoga exercise for children with autism spectrum disorder in special education schools: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1021-1028. |
[9] | YANG Yaru, YANG Jian. School-based physical activity-related health services and their health benefits within the World Health Organization health-promoting school framework: a systematic review of systematic reviews [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1040-1047. |
[10] | WANG He, HAN Liang, KAN Mengfan, YU Shaohong. Efficacy of electrical stimulation on shoulder-hand syndrome after stroke: a systematic review and meta-analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1048-1056. |
[11] | SHI Jiawei, LI Lingyu, YANG Haojie, WANG Qinlu, ZOU Haiou. Effect of preoperative prerehabilitation training on total knee arthroplasty: a systematic review of systematic reviews [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1057-1064. |
[12] | ZOU Yucong, ZHOU Jing, LIN Weiming, LI Dongxia, WANG Juan, WANG Yuqi, WANG Yulong. Treatments for prolonged disorder of consciousness in recent five years: a visualized analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1065-1071. |
[13] | JIANG Changhao, HUANG Chen, GAO Xiaoyan, DAI Yuanfu, ZHAO Guoming. Effect of neurofeedback training on cognitive function in the elderly: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(8): 903-909. |
[14] | WEI Xiaowei, YANG Jian, WEI Chunyan, HE Qiling. Adapted physical education programs for psychomotor development in school settings for children with intellectual and developmental disabilities: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(8): 910-918. |
[15] | LI Fang, HUO Su, DU Jubao, LIU Xiuzhen, LI Xiaoshuang, SONG Weiqun. Effect of transcranial direct current stimulation combined with task-oriented rehabilitation training on forelimb motor dysfunction in rats with spinal cord injury [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(7): 777-781. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|