《Chinese Journal of Rehabilitation Theory and Practice》 ›› 2021, Vol. 27 ›› Issue (10): 1190-1198.doi: 10.3969/j.issn.1006-9771.2021.10.009
Previous Articles Next Articles
LIU Xiao-li1,Xiangrong SHI2,XIANG Zheng1(),ZHU Huan1
Received:
2019-10-15
Revised:
2021-09-01
Published:
2021-10-25
Online:
2021-10-29
Contact:
XIANG Zheng
E-mail:2216311@qq.com
Supported by:
CLC Number:
LIU Xiao-li,Xiangrong SHI,XIANG Zheng,ZHU Huan. Rehabilitation of Moderate Intermittent Hypoxia on Clinical Related Diseases (review)[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2021, 27(10): 1190-1198.
"
类别 | 纳入文献 | 研究对象 | IH干预策略 | 结果 | 效果 |
---|---|---|---|---|---|
改善认知功能障碍 | Zhang等[ | 幼年小鼠 | 16.0%O2,每天4 h,持续3~4周 | 水迷宫和八臂迷宫成绩显著增加,海马中突触增多 | 提高空间学习和记忆能力 |
Manukhina等[ | 阿尔茨海默病小鼠 | 每天模拟海拔4000 m高度环境4 h,持续14 d | 被动回避性条件反射增强,NO代谢产物减少 | 有效阻止氧化应激,减缓神经退行性病变及维持认知功能 | |
Bayer等[ | 64~92岁记忆力减退老人 | 4~7 min 10%~14%O2-2~4 min 30%~40%O2,每次4~8个循环,每周3次,持续5~7周 | DemTect量表测试和画钟试验成绩均显著提高 | 提高老人认知功能 | |
Serebrovska等[ | 轻度认知功能障碍患者 | 5 min 12%O2-3 min常氧,每次4个循环,每周5次,持续3周 | 蒙特利尔认知评估量表测试成绩显著提高,β-淀粉样蛋白表达显著降低 | 改善认知功能,减缓症状发展 | |
Wang等[ | 记忆力减退老人 | 5 min 10%O2-5 min常氧,每次8个循环,每周3次,持续8周 | 大脑氧含量增加,短时记忆能力测试和数字广度测试成绩提高 | 提高短时记忆和注意力 | |
缺血性脑卒中康复 | Tsai等[ | 脑缺血大鼠 | 12%O2,每天4 h,持续7 d | 海马神经元BDNF表达增加,突触素强度和密度增加 | 能够促使海马神经和突触发生,挽救缺血引起的空间学习和记忆障碍 |
抗抑郁 | Rybnikova等[ | 成年大鼠 | 每天模拟5000 m海拔高度环境2 h,持续10 d | 抗抑郁和焦虑效果与抗抑郁药物一致 | 具有抗抑郁和焦虑作用,预防抑郁发作 |
Zhu等[ | 成年大鼠 | 每天模拟5000 m海拔高度4 h,持续14 d | 海马神经发生显著增加 | 潜在治疗抑郁的方法 | |
脊髓损伤康复 | Trumbower等[ | 慢性脊神经损伤患者 | 单次1 min 9%O2-1 min常氧,15个循环 | 足底屈曲力矩和踝关节跖屈电活性显著增加 | 增强慢性脊髓损伤患者运动能力 |
Hayes等[ | 脊髓损伤1年以上患者 | 90 s 9%O2-60 s常氧,15个循环,持续5 d | 显著提高患者步行速度和距离 | 促进患者功能恢复 | |
Navarrete-Opazo等[ | 损伤> 6个月的脊髓损伤患者 | 90 s 9%O2-60 s常氧,15个循环,持续4周 | 10 m步行测试和6 min步行试验显著增强 | 改善患者步行功能 | |
Naidu等[ | 受伤时间< 12个月的脊髓损伤患者 | 90 s 9%O2-60 s常氧,15个循环,持续15 d | 10 m步行测试、6 min步行试验和平衡能力显著增强。 | 患者步行功能得到改善 | |
改善呼吸功能 | Lovett-Barr等[ | 脊髓完全半切大鼠 | 5 min 10%O2-5 min常氧,每次10个周期,持续7 d | 增加大鼠的肺通气量和增强膈肌收缩 | 改善呼吸功能 |
Satriotomo等[ | 脊髓完全半切大鼠 | 5 min 10.5% O2-5 min常氧,每次10个周期,持续7 d | 膈神经长时程易化 | 引起膈神经化学可塑性 | |
缓解COPD症状 | Burtscher等[ | COPD患者 | 3~5 min 12%~15% O2-3~5 min常氧,每天5~9个周期,持续15 d | 显著增加患者压力反射敏感性、高碳酸血症通气反应、时间肺活量和肺活量 | 改善COPD症状 |
对冠心病的康复作用 | del Pilar Valle等[ | 冠心病患者 | 模拟2400 m海拔高度每天持续1 h,14次 | 心肌灌注明显改善,且无心肌损伤现象 | 可能是治疗冠心病的新方法 |
Glazachev等[ | 冠心病患者 | 4~6 min 10%~12% O2-3 min 30%~35%O2,每次5~7个循环,每周3次,持续5周 | 运动能力改善,收缩压和舒张压降低,左心室射血分数提高 | 能够改善运动耐受性,提高生活质量 | |
降血压 | Kong等[ (2014) | 肥胖成年人 | 每周16 h常氧训练+6 h模拟1000~2000 m海拔高度训练,持续4周 | 与每周常氧22 h训练组相比,收缩压和平均动脉压显著下降 | IH环境下训练有利于血压降低 |
Zhang等[ | 健康成年人 | 5~6 min 10% O2-4 min常氧,每次5~10个循环,持续14 d | 增强基线迷走心功能,减弱对缺氧的心动过速反应 | 增强迷走神经功能 | |
Liu等[ (2020) | 健康老人 | 单次5 min 10%O2-5 min常氧循环5个周期 | 收缩压和舒张压平均下降2~6 mmHg | 有降血压作用 | |
Wang 等[ (2020) | 记忆力减退老人 | 5 min 10% O2-5 min常氧,每次8个周期,每周3次,持续8周 | 安静时血压降低5~7 mmHg | 降血压作用 | |
减肥 | Netzer等[ | 肥胖成年人 | 90 min 15%O2,每周3次,持续8周的运动训练 | 较常氧训练组体质量降低更多 | 较好的减肥方法 |
Lippl等[ (2010) | 男性肥胖受试者 | 海拔2650 m高度居住7 d | 体质量显著降低 | 肥胖者在高海拔地区体质量减轻 | |
Kong等[ (2014) | 肥胖成年人 | 每周16 h常氧训练+6 h模拟1000~2000 m海拔高度训练,持续4周 | 与每周常氧22 h训练组相比,体质量降低更多 | IH环境下运动减肥效果更好 | |
Hobbins等[ | 肥胖受试者 | 15 min 13%O2-2 min常氧,每次8个循环,持续2周(低氧时运动,常氧休息) | 体质量和6 min步行测试与常氧训练组相比无显著性差异 | IH环境下运动对体质量影响不显著 | |
改善T2D症状 | Serebrovska 等[ | 前驱糖尿病患者 | 5 min 12%O2-5 min常氧,每次4个循环,每周3次,持续3周 | 血糖水平显著下降 | 有助于预防T2D的发展 |
de Groote等[ | 肥胖青少年 | 每天60 min 15%O2,每周3次,持续6周耐力和抗阻运动 | 增强胰岛素敏感性,降低血糖和甘油三酯水平 | 减轻胰岛素抵抗和降低青少年T2D | |
改善运动能力 | Burtscher等[ | 50~70岁老人 | 3~5 min 10%~14%O2-3 min常氧,每周5次,持续3周 | 峰值耗氧量和血氧饱和度均显著增加 | 提高有氧能力和耐力 |
Bayer等[ (2017) | 64~92岁老人 | 4~7min 10%~14%O2-2~4 min 30%~40%O2,每次4~8个循环,每周3次,持续5~7周 | 6 min步行试验成绩显著提高 | 提高老人有氧运动能力 | |
Bayer等[ (2019) | 64~92岁健康老人 | 4~7 min 10%~14%O2-2~4 min 30%~40%O2,每次4~8个循环,每周3次,持续5~7周 | Tinetti运动试验、起立行走试验、Barthel指数与对照组相比无显著性差异 | 低氧-高氧干预并不能显著增加感知能力和平衡协调性 |
[1] |
MALLET R T, MANUKHINA E B, RUELAS S S, et al. Cardioprotection by intermittent hypoxia conditioning: evidence, mechanisms, and therapeutic potential[J]. Am J Physiol Heart Circ Physiol, 2018, 315(2):H216-H232.
doi: 10.1152/ajpheart.00060.2018 |
[2] |
LIN X, JAGADAPILLAI R, CAI J, et al. Metallothionein induction attenuates the progression of lung injury in mice exposed to long-term intermittent hypoxia[J]. Inflamm Res, 2020, 69(1):15-26.
doi: 10.1007/s00011-019-01287-z |
[3] | LIU X, CHEN X, KLINE G, et al. Reduced cerebrovascular and cardioventilatory responses to intermittent hypoxia in elderly[J]. Respir Physiol Neurobiol, 2020, 271:103306. |
[4] | WANG H, SHI X, SCHENCK H, et al. Intermittent hypoxia training for treating mild cognitive impairment: a pilot study[J]. Am J Alzheimers Dis Other Demen, 2020, 35:1533317519896725. |
[5] |
SEREBROVSKAYA T V, XI L. Intermittent hypoxia training as non-pharmacologic therapy for cardiovascular diseases: practical analysis on methods and equipment[J]. Exp Biol Med (Maywood), 2016, 241(15):1708-1723.
doi: 10.1177/1535370216657614 |
[6] |
WALSH N P, OLIVER S J. Exercise, immune function and respiratory infection: an update on the influence of training and environmental stress[J]. Immunol Cell Biol, 2016, 94(2):132-139.
doi: 10.1038/icb.2015.99 |
[7] | MENG Z, GAO B, GAO H, et al. Four weeks of hypoxia training improves cutaneous microcirculation in trained rowers[J]. Physiol Res, 2019, 68(5):757-766. |
[8] |
MUNN Z, STERN C, AROMATARIS E, et al. What kind of systematic review should I conduct? A proposed typology and guidance for systematic reviewers in the medical and health sciences[J]. BMC Med Res Methodol, 2018, 18(1):5.
doi: 10.1186/s12874-017-0468-4 |
[9] |
ZHANG J X, CHEN X Q, DU J Z, et al. Neonatal exposure to intermittent hypoxia enhances mice performance in water maze and 8-arm radial maze tasks[J]. J Neurobiol, 2005, 65(1):72-84.
doi: 10.1002/(ISSN)1097-4695 |
[10] |
MANUKHINA E B, GORYACHEVA A V, BARSKOV I V, et al. Prevention of neurodegenerative damage to the brain in rats in experimental Alzheimer's disease by adaptation to hypoxia[J]. Neurosci Behav Physiol, 2010, 40(7):737-743.
doi: 10.1007/s11055-010-9320-6 |
[11] | BAYER U, LIKAR R, PINTER G, et al. Intermittent hypoxic-hyperoxic training on cognitive performance in geriatric patients[J]. Alzheimers Dement (N Y), 2017, 3(1):114-122. |
[12] | SEREBROVSKA Z O, SEREBROVSKA T V, KHOLIN V A, et al. Intermittent hypoxia-hyperoxia training improves cognitive function and decreases circulating biomarkers of Alzheimer's disease in patients with mild cognitive impairment: a pilot study[J]. Int J Mol Sci, 2019, 20(21):E5405. |
[13] |
TSAI Y W, YANG Y R, SUN S H, et al. Post ischemia intermittent hypoxia induces hippocampal neurogenesis and synaptic alterations and alleviates long-term memory impairment[J]. J Cereb Blood Flow Metab, 2013, 33(5):764-773.
doi: 10.1038/jcbfm.2013.15 |
[14] |
RYBNIKOVA E A, SAMOILOV M O, MIRONOVA V I, et al. The possible use of hypoxic preconditioning for the prophylaxis of post-stress depressive episodes[J]. Neurosci Behav Physiol, 2008, 38(7):721-726.
doi: 10.1007/s11055-008-9038-x |
[15] |
ZHU X H, YAN H C, ZHANG J, et al. Intermittent hypoxia promotes hippocampal neurogenesis and produces antidepressant-like effects in adult rats[J]. J Neurosci, 2010, 30(38):12653-12663.
doi: 10.1523/JNEUROSCI.6414-09.2010 |
[16] |
TRUMBOWER R D, JAYARAMAN A, MITCHELL G S, et al. Exposure to acute intermittent hypoxia augments somatic motor function in humans with incomplete spinal cord injury[J]. Neurorehabil Neural Repair, 2012, 26(2):163-172.
doi: 10.1177/1545968311412055 |
[17] |
HAYES H B, JAYARAMAN A, HERRMANN M, et al. Daily intermittent hypoxia enhances walking after chronic spinal cord injury: a randomized trial[J]. Neurology, 2014, 82(2):104-113.
doi: 10.1212/01.WNL.0000437416.34298.43 |
[18] |
NAVARRETE-OPAZO A, ALCAYAGA J, SEPÚLVEDA O, et al. Repetitive intermittent hypoxia and locomotor training enhances walking function in incomplete spinal cord injury subjects: a randomized, triple-blind, placebo-controlled clinical trial[J]. J Neurotrauma, 2017, 34(9):1803-1812.
doi: 10.1089/neu.2016.4478 |
[19] |
NAIDU A, PETERS D M, TAN A Q, et al. Daily acute intermittent hypoxia to improve walking function in persons with subacute spinal cord injury: a randomized clinical trial study protocol[J]. BMC Neurol, 2020, 20(1):273.
doi: 10.1186/s12883-020-01851-9 |
[20] |
LOVETT-BARR M R, SATRIOTOMO I, MUIR G D, et al. Repetitive intermittent hypoxia induces respiratory and somatic motor recovery after chronic cervical spinal injury[J]. J Neurosci, 2012, 32(11):3591-3600.
doi: 10.1523/JNEUROSCI.2908-11.2012 |
[21] |
SATRIOTOMO I, DALE E A, DAHLBERG J M, et al. Repetitive acute intermittent hypoxia increases expression of proteins associated with plasticity in the phrenic motor nucleus[J]. Exp Neurol, 2012, 237(1):103-115.
doi: 10.1016/j.expneurol.2012.05.020 |
[22] |
BURTSCHER M, HAIDER T, DOMEJ W, et al. Intermittent hypoxia increases exercise tolerance in patients at risk for or with mild COPD[J]. Respir Physiol Neurobiol, 2009, 165(1):97-103.
doi: 10.1016/j.resp.2008.10.012 |
[23] |
DEL PILAR VALLE M, GARCIA-GODOS F, WOOLCOTT O O, et al. Improvement of myocardial perfusion in coronary patients after intermittent hypobaric hypoxia[J]. J Nucl Cardiol, 2006, 13(1):69-74.
doi: 10.1016/j.nuclcard.2005.11.008 |
[24] |
GLAZACHEV O, KOPYLOV P, SUSTA D, et al. Adaptations following an intermittent hypoxia-hyperoxia training in coronary artery disease patients: a controlled study[J]. Clin Cardiol, 2017, 40(6):370-376.
doi: 10.1002/clc.2017.40.issue-6 |
[25] |
KONG Z, ZANG Y, HU Y. Normobaric hypoxia training causes more weight loss than normoxia training after a 4-week residential camp for obese young adults[J]. Sleep Breath, 2014, 18(3):591-597.
doi: 10.1007/s11325-013-0922-4 |
[26] |
ZHANG P, SHI X, DOWNEY H F. Two-week normobaric intermittent-hypoxic exposures stabilize cerebral perfusion during hypocapnia and hypercapnia[J]. Exp Biol Med (Maywood), 2015, 240(7):961-968.
doi: 10.1177/1535370214562339 |
[27] |
NETZER N C, CHYTRA R, KUPPER T. Low intense physical exercise in normobaric hypoxia leads to more weight loss in obese people than low intense physical exercise in normobaric sham hypoxia[J]. Sleep Breath, 2008, 12(2):129-134.
doi: 10.1007/s11325-007-0149-3 |
[28] |
LIPPL F J, NEUBAUER S, SCHIPFER S, et al. Hypobaric hypoxia causes body weight reduction in obese subjects[J]. Obesity (Silver Spring), 2010, 18(4):675-681.
doi: 10.1038/oby.2009.509 |
[29] | HOBBINS L, HUNTER S, GAOUA N, et al. Short-term perceptually regulated interval-walk training in hypoxia and normoxia in overweight-to-obese adults[J]. J Sports Sci Med, 2021, 20(1):45-51. |
[30] |
SEREBROVSKA T V, PORTNYCHENKO A G, DREVYTSKA T I, et al. Intermittent hypoxia training in prediabetes patients: beneficial effects on glucose homeostasis, hypoxia tolerance and gene expression[J]. Exp Biol Med (Maywood), 2017, 242(15):1542-1552.
doi: 10.1177/1535370217723578 |
[31] |
DE GROOTE E, BRITTO F A, BULLOCK L, et al. Hypoxic training improves normoxic glucose tolerance in adolescents with obesity[J]. Med Sci Sports Exerc, 2018, 50(11):2200-2208.
doi: 10.1249/MSS.0000000000001694 |
[32] |
BURTSCHER M, PACHINGER O, EHRENBOURG I, et al. Intermittent hypoxia increases exercise tolerance in elderly men with and without coronary artery disease[J]. Int J Cardiol, 2004, 96(2):247-254.
doi: 10.1016/j.ijcard.2003.07.021 |
[33] |
BAYER U, LIKAR R, PINTER G, et al. Effects of intermittent hypoxia-hyperoxia on mobility and perceived health in geriatric patients performing a multimodal training intervention: a randomized controlled trial[J]. BMC Geriatr, 2019, 19(1):167.
doi: 10.1186/s12877-019-1184-1 |
[34] |
MANUKHINA E, DOWNEY H, SHI X, et al. Intermittent hypoxia training protects cerebrovascular function in Alzheimer's disease[J]. Exp Biol Med (Maywood), 2016, 241(12):1351-1363.
doi: 10.1177/1535370216649060 |
[35] |
BAILLIEUL S, CHACAROUN S, DOUTRELEAU S, et al. Hypoxic conditioning and the central nervous system: a new therapeutic opportunity for brain and spinal cord injuries?[J]. Exp Biol Med (Maywood), 2017, 242(11):1198-1206.
doi: 10.1177/1535370217712691 |
[36] |
HAMMEN C. Risk factors for depression: an autobiographical review[J]. Annu Rev Clin Psychol, 2018, 14:1-28.
doi: 10.1146/clinpsy.2018.14.issue-1 |
[37] | 刘晓丽, 刘超能, 王人卫, 等. 心肺功能在健康风险预测中的应用[J]. 中国运动医学杂志, 2018, 37(2):158-165. |
LIU X L, LIU C N, WANG R W, et al. The health risk prediction of cardiorespiratory fitness[J]. Chin J Sports Med, 2018, 37(2):158-165. | |
[38] |
PERIM R R, MITCHELL G S. Circulatory control of phrenic motor plasticity[J]. Respir Physiol Neurobiol, 2019, 265:19-23.
doi: 10.1016/j.resp.2019.01.004 |
[39] | DALE E A, BEN MABROUK F, MITCHELL G S. Unexpected benefits of intermittent hypoxia: enhanced respiratory and nonrespiratory motor function[J]. Physiology (Bethesda), 2014, 29(1):39-48. |
[40] |
CUI F, GUAN Y, GUO J, et al. Chronic intermittent hypobaric hypoxia protects vascular endothelium by ameliorating autophagy in metabolic syndrome rats[J]. Life Sci, 2018, 205:145-154.
doi: 10.1016/j.lfs.2018.05.008 |
[41] |
CABRERA-AGUILERA I, RIZO-ROCA D, MARQUES E A, et al. Additive effects of intermittent hypobaric hypoxia and endurance training on bodyweight, food intake, and oxygen consumption in rats[J]. High Alt Med Biol, 2018, 19(3):278-285.
doi: 10.1089/ham.2018.0013 |
[42] | GE M Q, YEUNG S C, MAK J C W , et al. Differential metabolic and inflammatory responses to intermittent hypoxia in substrains of lean and obese c57bl/6 mice[J]. Life Sci, 2019, 238:116959. |
[43] | HOBBINS L, GAOUA N, HUNTER S, et al. Psycho-physiological responses to perceptually-regulated interval runs in hypoxia and normoxia[J]. Physiol Behav, 2019, 209:112611. |
[44] |
HOBBINS L, HUNTER S, GAOUA N, et al. Normobaric hypoxic conditioning to maximize weight loss and ameliorate cardio-metabolic health in obese populations: a systematic review[J]. Am J Physiol Regul Integr Comp Physiol, 2017, 313(3):R251-R264.
doi: 10.1152/ajpregu.00160.2017 |
[45] | VERGES S, CHACAROUN S, GODIN-RIBUOT D, et al. Hypoxic conditioning as a new therapeutic modality[J]. Front Pediatr, 2015, 3:58. |
[46] | WANG Y, WEN L, ZHOU S, et al. Effects of four weeks intermittent hypoxia intervention on glucose homeostasis, insulin sensitivity, GLUT4 translocation, insulin receptor phosphorylation, and Akt activity in skeletal muscle of obese mice with type 2 diabetes[J]. PLoS One, 2018, 13(9):e0203551. |
[47] |
COSTALAT G, LEMAITRE F, TOBIN B, et al. Intermittent hypoxia revisited: a promising non-pharmaceutical strategy to reduce cardio-metabolic risk factors?[J]. Sleep Breath, 2018, 22(1):267-271.
doi: 10.1007/s11325-017-1459-8 |
[48] |
LEONE R J, LALANDE S. Intermittent hypoxia as a means to improve aerobic capacity in type 2 diabetes[J]. Med Hypotheses, 2017, 100:59-63.
doi: 10.1016/j.mehy.2017.01.010 |
[49] | 朱欢, 高炳宏. 高原训练期间赛艇运动员微循环血流速度的变化与Hb,BU,CK关系的研究[J]. 河南师范大学学报(自然科学版), 2016, 44(2):176-182. |
ZHU H, GAO B H. The study of relationship between maximun reserve capacity of microcirculatory blood perfusion and functional status of man rower during six weeks of altitude training[J]. J Henan Normal Univ (Nat Sci Ed), 2016, 44(2):176-182. | |
[50] |
KOISTINEN P O, RUSKO H, IRJALA K, et al. EPO, red cells, and serum transferrin receptor in continuous and intermittent hypoxia[J]. Med Sci Sports Exerc, 2000, 32(4):800-804.
doi: 10.1097/00005768-200004000-00012 |
[51] | 王玺, 高炳宏. 3周高住低训对优秀赛艇运动员红细胞免疫及免疫系统的影响[J]. 中国运动医学杂志, 2014, 33(11):1054-1059. |
WANG X, GAO B H. Increased CD55 and CD59 expressions of elite male rowers after 3-week hypoxic training[J]. Chin J Sports Med, 2014, 33(11):1054-1059. |
[1] | SHAO Weiting, LEI Jianghua. Effect of response interruption and redirection as a behavioral intervention on vocal stereotypy in children with autism spectrum disorder: a scoping review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 10-20. |
[2] | WANG Hangyu, GE Keke, FAN Yonghong, DU Lilu, ZOU Min, FENG Lei. Effect of active music therapy on cognitive function for older adults with cognitive impairment: a systematic review based on ICD-11 and ICF [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 36-43. |
[3] | WEN Jianing, JIN Qiuyan, ZHANG Qi, LI Jie, SI Qi. Effect of cognitively engaging physical activity on developing executive function of children and adolescents: a systematic review based on ICF [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 44-53. |
[4] | GE Keke, FAN Yonghong, WANG Hangyu, DU Lilu, LI Changjiang, ZOU Min. Health benefit of mindfulness intervention for older adults with insomnia disorders: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 54-60. |
[5] | ZHANG Jingya, ZOU Min, SUN Hongwei, SUN Changlong, ZHU Juntong. Effect of psychological intervention on anxiety or depression in children and adolescents with hearing impairment: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1004-1011. |
[6] | WANG Junyu, YANG Yong, YUAN Xun, XIE Ting, ZHUANG Jie. Effect of high-intensity interval training on executive function for healthy children and adolescents: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1012-1020. |
[7] | WEI Xiaowei, YANG Jian, WEI Chunyan. Psychological and behavioral benefits of adapted yoga exercise for children with autism spectrum disorder in special education schools: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1021-1028. |
[8] | YANG Yaru, YANG Jian. School-based physical activity-related health services and their health benefits within the World Health Organization health-promoting school framework: a systematic review of systematic reviews [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1040-1047. |
[9] | WANG He, HAN Liang, KAN Mengfan, YU Shaohong. Efficacy of electrical stimulation on shoulder-hand syndrome after stroke: a systematic review and meta-analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1048-1056. |
[10] | SHI Jiawei, LI Lingyu, YANG Haojie, WANG Qinlu, ZOU Haiou. Effect of preoperative prerehabilitation training on total knee arthroplasty: a systematic review of systematic reviews [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1057-1064. |
[11] | JIANG Changhao, HUANG Chen, GAO Xiaoyan, DAI Yuanfu, ZHAO Guoming. Effect of neurofeedback training on cognitive function in the elderly: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(8): 903-909. |
[12] | WEI Xiaowei, YANG Jian, WEI Chunyan, HE Qiling. Adapted physical education programs for psychomotor development in school settings for children with intellectual and developmental disabilities: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(8): 910-918. |
[13] | ZHANG Yuan, YANG Jian. School health services and effectiveness based on World Health Organization health-promoting school framework: a scoping review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(7): 791-799. |
[14] | WANG Shaopu, CHEN Gang. Psychological-behavioral health services and its outcome based on World Health Organization health-promoting school framework: a systematic review of systematic reviews [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(7): 800-807. |
[15] | JIANG Changhao, GAO Xiaoyan. Effect of acute physical activity on cognitive function in children: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(6): 667-672. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|