《Chinese Journal of Rehabilitation Theory and Practice》 ›› 2023, Vol. 29 ›› Issue (9): 1104-1109.doi: 10.3969/j.issn.1006-9771.2023.09.015
Previous Articles Next Articles
CAI Huanian1, FEI Sixian1, ZHANG Yichen1, SUN Qing1, GUO Shuai1(), SONG Tao2,3
Received:
2023-06-20
Revised:
2023-08-14
Published:
2023-09-25
Online:
2023-10-26
Contact:
GUO Shuai
E-mail:guoshuai@i.shu.edu.cn
Supported by:
CLC Number:
CAI Huanian, FEI Sixian, ZHANG Yichen, SUN Qing, GUO Shuai, SONG Tao. Motion assistance analysis for robot-assisted tele-rehabilitation based on bilateral admittance control[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1104-1109.
[1] |
SHARIFI I, TALEBI H A. A framework for simultaneous training and therapy in multilateral tele-rehabilitation[J]. Comput Elec Eng, 2016, 56: 700-714.
doi: 10.1016/j.compeleceng.2016.08.002 |
[2] |
KANG G, OH H S, KYUE S J, et al. Variable admittance control of robot manipulators based on human intention[J]. IEEE/ASME Trans Mech, 2019, 24(3): 1023-1032.
doi: 10.1109/TMECH.3516 |
[3] |
SHARIFI M, BEHZADIPOUR S, SALARIEH H, et al. Cooperative modalities in robotic tele-rehabilitation using nonlinear bilateral impedance control[J]. Contr Eng Prac, 2017, 67: 52-63.
doi: 10.1016/j.conengprac.2017.07.002 |
[4] |
SHARIFI M, SALARIEH H, BEHZADIPOUR S, et al. Impedance control of non-linear multi-DOF teleoperation systems with time delay[J]. IET Contr Theory Appl, 2018, 12(12): 1722-1729.
doi: 10.1049/cth2.v12.12 |
[5] |
LIU X, TAO R, TAVAKOLI M. Adaptive control of uncertain nonlinear teleoperation systems[J]. Mechatronics, 2014, 24(1): 66-78.
doi: 10.1016/j.mechatronics.2013.11.010 |
[6] |
苗青, 孙晨阳, 张明明, 等. 基于任务表现的机器人辅助康复自适应控制策略[J]. 机器人, 2021, 43(5): 539-546, 556.
doi: 10.13973/j.cnki.robot.200555 |
MIAO Q, SUN C Y, ZHANG M M, et al. Performance-based adaptive control strategy for robot-assisted rehabilitation[J]. Robot, 2021, 43(5): 539-546, 556.
doi: 10.13973/j.cnki.robot.200555 |
|
[7] |
PROIETTI T, CROCHER V, ROBY-BRAMI A, et al. Upper-limb robotic exoskeletons for neurorehabilitation: a review on control strategies[J]. IEEE Rev Biomed Eng, 2016, 9: 4-14.
doi: 10.1109/RBME.2016.2552201 pmid: 27071194 |
[8] |
BABAIASL M, MAHDIOUN S H, JARYANI P, et al. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke[J]. Disabil Rehabil Assist Technol, 2016, 11(4): 263-280.
doi: 10.3109/17483107.2014.1002539 pmid: 25600057 |
[9] |
YU W, PERRUSQUÍA A. Simplified stable admittance control using end-effector orientations[J]. Int J Soc Robotics, 2020, 12: 1061-1073.
doi: 10.1007/s12369-019-00579-y |
[10] | SANTOS L, CORTESÃO R. Admittance control for robotic-assisted tele-echography[C]. Montevideo, Uruguay:16th International Conference on Advanced Robotics, 2013. |
[11] |
FERRAGUTI F, TALIGNANI LANDI C, SABATTINI L, et al. A variable admittance control strategy for stable physical human-robot interaction[J]. Int J Robot Res, 2019, 38(6): 747-765.
doi: 10.1177/0278364919840415 |
[12] |
杜志江, 王伟, 闫志远, 等. 基于模糊强化学习的微创外科手术机械臂人机交互方法[J]. 机器人, 2017, 39(3): 363-370.
doi: 10.13973/j.cnki.robot.2017.0363 |
DU Z J, WANG W, YAN Z Y, et al. A physical human-robot interaction algorithm based on fuzzy reinforcement learning for minimally invasive surgery manipulator[J]. Robot, 2017, 39(3): 363-370. | |
[13] |
ZHANG J J, CHEAH C C. Passivity and stability of human-robot interaction control for upper-limb rehabilitation robots[J]. IEEE Trans Robot, 2015, 31(2): 233-245.
doi: 10.1109/TRO.2015.2392451 |
[14] |
KHADEMIAN B, HASHTRUDI-ZAAD K. A framework for unconditional stability analysis of multimaster/multislave teleoperation systems[J]. IEEE Trans Robot, 2013, 29(3): 684-694.
doi: 10.1109/TRO.2013.2242377 |
[15] |
ZIMMERMANN Y, FORINO A, RIENER R, et al. ANYexo: a versatile and dynamic upper-limb rehabilitation robot[J]. IEEE Robot Autom Lett, 2019, 4(4): 3649-3656.
doi: 10.1109/LRA.2019.2926958 |
[16] |
VERDEL D, BASTIDE S, VIGNAIS N, et al. An identification-based method improving the transparency of a robotic upper limb exoskeleton[J]. Robotica, 2021, 39(9): 1711-1728.
doi: 10.1017/S0263574720001459 |
[17] | IKEURA R, MORIGUCHI T, MIZUTANI K, et al. Optimal variable impedance control for a robot and its application to lifting an object with a human[C]. Berlin, Germany:11th IEEE International Workshop on Robot and Human Interactive Communication (ROMAN 2000), 2002. |
[18] | DIMEAS F, ASPRAGATHOS N. Fuzzy learning variable admittance control for human-robot cooperation[C]. Chicago, IL: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2014. |
[19] |
HAMAD Y M, AYDIN Y, BASDOGAN C. Adaptive human force scaling via admittance control for physical human-robot interaction[J]. IEEE Trans Haptics, 2021, 14(4): 750-761.
doi: 10.1109/TOH.2021.3071626 |
[20] |
PEHLIVAN A U, LOSEY D P, O'MALLEY M K. Minimal assist-as-needed controller for upper limb robotic rehabilitation[J]. IEEE Trans Robot, 2016, 32(1): 113-124.
doi: 10.1109/TRO.2015.2503726 |
[21] | MOUNIS S Y A, AZLAN N Z, SADO F. Assist-as-needed control strategy for upper-limb rehabilitation based on subject's functional ability[J]. Measur Contr, 2019, 52(9-10): 1354-1361. |
[22] |
MOUNIS S Y A, AZLAN N Z, SADO F. Assist-as-needed robotic rehabilitation strategy based on z-spline estimated functional ability[J]. IEEE Access, 2020, 8: 157557-157571.
doi: 10.1109/Access.6287639 |
[23] |
LI X, ZENG H, ZHANG J, et al. Engagement enhancement based on Bayesian optimization for adaptive assist-as-needed controller[J]. IEEE Robot Autom Lett, 2022, 7(1): 49-56.
doi: 10.1109/LRA.2021.3118473 |
[24] | LUO L, PENG L, HOU Z, et al. An adaptive impedance controller for upper limb rehabilitation based on estimation of patients' stiffness[C]. Macau: IEEE International Conference on Robotics and Biomimetics, 2017. |
[25] | PAPALEO E, ZOLLO L, SPEDALIERE L, et al. Patient-tailored adaptive robotic system for upper-limb rehabilitation[C]. Karlsruhe, Germany: IEEE International Conference on Robotics and Automation, 2013. |
[26] |
LIN C H, SU Y Y, LAI Y H, et al. A spatial-motion assist-as-needed controller for the passive, active, and resistive robot-aided rehabilitation of the wrist[J]. IEEE Access, 2020, 8: 133951-133960.
doi: 10.1109/Access.6287639 |
[27] |
ZHANG L, GUO S, SUN Q. Development and assist-as-needed control of an end-effector upper limb rehabilitation robot[J]. Appl Sci, 2020, 10(19): 6684.
doi: 10.3390/app10196684 |
[28] |
PAN J S, ZHANG L G, SUN Q. Development of a force-field-based control strategy for an upper-limb rehabilitation robot[J]. Mech Sci, 2022, 13(2): 949-959.
doi: 10.5194/ms-13-949-2022 |
[29] |
ZHANG L, GUO S, XI F. Performance-based assistance control for robot-mediated upper-limbs rehabilitation[J]. Mechatronics, 2023, 89: 102919.
doi: 10.1016/j.mechatronics.2022.102919 |
[30] |
ASL H J, YAMASHITA M, NARIKIYO T, et al. Field-based assist-as-needed control schemes for rehabilitation robots[J]. IEEE-ASME Trans Mechatron, 2020, 25(4): 2100-2111.
doi: 10.1109/TMECH.3516 |
[31] |
STAN D, PIERRE-YVES R C, TAYA H, et al. Passive wrist stiffness: the influence of handedness[J]. IEEE Trans Biomed Eng, 2018, 66(3): 656-665.
doi: 10.1109/TBME.2018.2853591 |
[32] | LANINI J, TSUJI T, WOLF P, et al. Teleoperation of two six-degree-of-freedom arm rehabilitation exoskeletons[C]. Singapore:2015 IEEE International Conference on Rehabilitation Robotics (ICORR), 2015. |
[33] | CARIGNAN C R, OLSSON P A. Cooperative control of virtual objects over the internet using force-reflecting master arms[C]. New Orleans, LA: IEEE International Conference on Robotics and Automation, 2004. |
[34] |
CHO H C, PARK J H. Stable bilateral teleoperation under a time delay using a robust impedance control[J]. Mechatronics, 2005, 15(5): 611-625.
doi: 10.1016/j.mechatronics.2004.05.006 |
[35] |
SHARIFI M, SALARIEH H, BEHZADIPOUR S, et al. Patient-robot-therapist collaboration using resistive impedance controlled tele-robotic systems subjected to time delays[J]. J Mech Robot, 2018, 10(6): 061003.
doi: 10.1115/1.4040961 |
[1] | LUO Lihua, WANG Yusheng, LI Jianfeng, DONG Jige. Effect of early postoperative comprehensive rehabilitation on children and youth with supracondylar fracture of humerus complicated with ulnar nerve injury [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 105-110. |
[2] | WANG Zihao, LI Xinhua, JIANG Huiping, GUO Sainan, LIANG Qiuman, SHI Tingqi. Short-term knee function after total knee arthroplasty and related factors [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 111-118. |
[3] | CHEN Junwen, CHEN Qian, CHEN Cheng, LI Shuyue, LIU Lingling, WU Cunshu, GONG Xiang, LU Jun, XU Guangxu. Effect of modified Baduanjin exercise on cardiopulmonary function, motor function and activities of daily living for stroke patients [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 74-80. |
[4] | SHI Jiawei, LI Lingyu, YANG Haojie, WANG Qinlu, ZOU Haiou. Effect of preoperative prerehabilitation training on total knee arthroplasty: a systematic review of systematic reviews [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1057-1064. |
[5] | LIU Yang, ZHANG Peng, HUANG Ying, CHEN Han, XU Chen, LI Min. Path analysis of mediating effect of perceived stress affecting impact of event in rehabilitation patients with traumatic injury [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(8): 954-960. |
[6] | YI Qifeng, HUANG Zhuoer, YANG Guoli, XIE Lihua, XIE Shengfeng, WU Xiaoxia, YAN Jin. Development, and reliability and validity testing of a knowledge needs questionnaire of respiratory rehabilitation training for in-service healthcare workers [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(8): 985-992. |
[7] | LI Ziyi, SONG Weiqun, DU Jubao, CAO Guanglei, ZHANG Yanming, LI Ran. Effect of motor imagery on knee function after unicompartmental knee arthroplasty [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(7): 745-749. |
[8] | REN Yi, WANG Rui, ZHANG Yaohua. Effect of proprioceptive neuromuscular facilitation combined with neuromuscular electrical stimulation on chronic ankle instability [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(7): 750-755. |
[9] | LI Fang, HUO Su, DU Jubao, LIU Xiuzhen, LI Xiaoshuang, SONG Weiqun. Effect of transcranial direct current stimulation combined with task-oriented rehabilitation training on forelimb motor dysfunction in rats with spinal cord injury [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(7): 777-781. |
[10] | WANG Jingxuan, LÜ Diyang, FANG Boyan. Non-drug rehabilitation for gait abnormality of Parkinson's disease: a review based on ClinicalTrials.gov [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(7): 816-821. |
[11] | MA Tiantian, YU Zifu, QIN Fang, LENG Xiaoxuan, LIU Xihua. Application of constraint-induced movement therapy in the field of rehabilitation: a visualized analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(7): 822-832. |
[12] | SUN Zhijie, GUO Xin, LAN Zhi, WANG Qiang. Turn intention perception and fall detection for smart walkers [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(7): 849-855. |
[13] | TANG Qiang, ZHENG Shuang, WANG Lei, WANG Yan, LI Baolong, LIU Guijun, ZHU Luwen. Development of traditional Chinese medicine rehabilitation curriculum based on World Health Organization rehabilitation competency framework [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(7): 862-868. |
[14] | WU Qianhao, HOU Rongjie, FU Liyuan. Pelvic floor rehabilitation domestic and abroad in the last decade: a visualized analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(6): 673-685. |
[15] | ZHENG Li, BAO Zhicheng, ZHANG Qi, REN Xuyan, SU Min. Effect of transcutaneous auricular vagus nerve stimulation combined with robot-assisted therapy on upper limb function of stroke patients [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(6): 691-696. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|