《Chinese Journal of Rehabilitation Theory and Practice》 ›› 2024, Vol. 30 ›› Issue (1): 95-104.doi: 10.3969/j.issn.1006-9771.2024.01.013
Previous Articles Next Articles
WEI Mengli1,2, ZHONG Yaping1,2(), ZHOU Yiwen1, GUI Huixian1, GUAN Yeming1, YU Tingting1
Received:
2023-10-31
Revised:
2023-12-05
Published:
2024-01-25
Online:
2024-02-04
Contact:
ZHONG Yaping, E-mail: Supported by:
CLC Number:
WEI Mengli, ZHONG Yaping, ZHOU Yiwen, GUI Huixian, GUAN Yeming, YU Tingting. Difference in bilateral lower limb muscle synergy mode for gait in patients after unilateral anterior cruciate ligament reconstruction[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 95-104.
[1] | DEWIG D R, JOHNSTON C D, PIETROSIMONE B, et al. Long-term gait biomechanics in level, uphill, and downhill conditions following anterior cruciate ligament reconstruction[J]. Clin Biomech, 2021, 84: 1-6. |
[2] | BOLCOS P O, MONONEN M E, TANAKA M S, et al. Identification of locations susceptible to osteoarthritis in patients with anterior cruciate ligament reconstruction: combining knee joint computational modelling with follow-up T1ρ and T2 imaging[J]. Clin Biomech, 2020, 79: 1-10. |
[3] |
NISHIDA Y, HASHIMOTO Y, ORITA K, et al. Serum cartilage oligomeric matrix protein detects early osteoarthritis in patients with anterior cruciate ligament deficiency[J]. Arthroscopy, 2022, 38(3): 873-878.
doi: 10.1016/j.arthro.2021.06.019 |
[4] |
BROPHY R H, CAI L, ZHANG Q, et al. Proteomic profile analysis of synovial fluid in patients with anterior cruciate ligament tears[J]. Am J Sports Med, 2022, 50(11): 2935-2943.
doi: 10.1177/03635465221112652 |
[5] |
NEAL K, WILLIAMS J R, ALFAYYADH A, et al. Knee joint biomechanics during gait improve from 3 to 6 months after anterior cruciate ligament reconstruction[J]. J Orthop Res, 2022, 40(9): 2025-2038.
doi: 10.1002/jor.25250 pmid: 34989019 |
[6] |
MANTASHLOO Z, LETAFATKAR A, MORADI M. Vertical ground reaction force and knee muscle activation asymmetries in patients with ACL reconstruction compared to involved individuals[J]. Knee Surg Sports Traumatol Arthrosc, 2020, 28(6): 2009-2014.
doi: 10.1007/s00167-019-05743-5 |
[7] |
CHEUNG V, SEKI K. Approaches to revealing the neural basis of muscle synergies: a review and a critique[J]. J Neurophysiol, 2021, 125(5): 1580-1597.
doi: 10.1152/jn.00625.2019 pmid: 33729869 |
[8] |
DI STASI S L, LOGERSTEDT D, GARDINIER E S, et al. Gait patterns differ between ACL-reconstructed athletes who pass return-to-sport criteria and those who fail[J]. Am J Sports Med, 2013, 41(6): 1310-1318.
doi: 10.1177/0363546513482718 pmid: 23562809 |
[9] | HOOPER D M, MORRISSEY M C, DRECHSLER W I, et al. Gait analysis 6 and 12 months after anterior cruciate ligament reconstruction surgery[J]. Clin Orthop Relat Res, 2002, 10(403): 168-178. |
[10] |
VAN EGMOND N, STOLWIJK N, VAN HEERWAARDEN R, et al. Gait analysis before and after corrective osteotomy in patients with knee osteoarthritis and a valgus deformity[J]. Knee Surg Sports Traumatol Arthrosc, 2017, 25(9): 2904-2913.
doi: 10.1007/s00167-016-4045-x |
[11] |
HATAMZADEH M, HASSANNEJAD R, SHARIFNEZHAD A. A new method of diagnosing athlete's anterior cruciate ligament health status using surface electromyography and deep convolutional neural network[J]. Biocybern Biomed Eng, 2019, 40(1): 65-76.
doi: 10.1016/j.bbe.2019.05.009 |
[12] |
TELLINI T L, LIMA K O, ALOUCHE S R, et al. Compliant surface after ACL reconstruction and its effects on gait[J]. Acta Sci Health Sci, 2013, 35(2): 237-242.
doi: 10.4025/actascihealthsci.v35i2.13528 |
[13] |
MILLET G Y, MORIN J B, DEGACHE F, et al. Running from Paris to Beijing: biomechanical and physiological consequences[J]. Eur J Appl Physiol, 2009, 107(6): 731-738.
doi: 10.1007/s00421-009-1194-3 pmid: 19756701 |
[14] |
BOERBOOM A L, HOF A L, HALBERTSMA J P, et al. A typical hamstrings electromyographic activity as a compensatory mechanism in anterior cruciate ligament deficiency[J]. Knee Surg Sports Traumatol Arthrosc, 2001, 9: 211-216.
doi: 10.1007/s001670100196 |
[15] | SAITO A, TOMITA A, ANDO R, et al. Muscle synergies are consistent across level and uphill treadmill running[J]. Sci Rep, 2018, 8(1): 1-10. |
[16] | DUTTA A, KHATTAR B, BANERJEE A. Nonlinear analysis of electromyogram following gait training with myoelectrically triggered neuromuscular electrical stimulation in stroke survivors[J]. Eurasip J Adv Sig Pr, 2012, 2012(1): 153-161. |
[17] |
KOBLBAUER I F, VAN SCHOOTEN K S, VERHAGEN E A, et al. Kinematic changes during running-induced fatigue and relations with core endurance in novice runners[J]. J Sci Med Sport, 2014, 17(4): 419-424.
doi: 10.1016/j.jsams.2013.05.013 pmid: 23790535 |
[18] |
BUTLER R J, MINICK K I, FERBER R, et al. Gait mechanics after ACL reconstruction: implication for the early onset of knee osteoarthritis[J]. Br J Sports Med, 2009, 43(5): 366-370.
doi: 10.1136/bjsm.2008.052522 |
[19] |
VISSCHER R, SANSGIRI S, FRESLIER M, et al. Towards validation and standardization of automatic gait event identification algorithms for use in paediatric pathological populations[J]. Gait Posture, 2021, 86: 64-69.
doi: 10.1016/j.gaitpost.2021.02.031 pmid: 33684617 |
[20] | SVONKO G, RENATO B, MARIO M, et al. Predicting physical activity levels from kinematic gait data using machine learning techniques[J]. Eng Appl Artif Intel, 2023, 123: 1-10. |
[21] | 畠中泰彦. 姿势·动作·步态分析[M]. 席家宁,马玉宝,译. 北京: 北京科学技术出版社, 2021: 21-23. |
TAIHIKO H. Posture-movement-gait analysis[M]. XI J N, MA Y B, trans. Beijing: Beijing Science and Technology Press, 2021: 21-23. | |
[22] |
LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(675): 788-791.
doi: 10.1038/44565 |
[23] |
ALLEN J L, KESAR T M, TING L H. Motor module generalization across balance and walking is impaired after stroke[J]. J Neurophysiol, 2019, 122(1): 277-289.
doi: 10.1152/jn.00561.2018 pmid: 31066611 |
[24] |
ROH J, RYMER W Z, BEER R F. Robustness of muscle synergies underlying three-dimensional force generation at the hand in involved humans[J]. J Neurophysiol, 2012, 107(8): 2123-2142.
doi: 10.1152/jn.00173.2011 |
[25] | BANKS C L, PAI M M, MCGUIRK T E, et al. Methodological choices in muscle synergy analysis impact differentiation of physiological characteristics following stroke[J]. Front Comput Neurosci, 2017, 11: 1-12. |
[26] |
LI Z C, ZHAO X Y, WANG Z Y, et al. A hierarchical classification of gestures under two force levels based on muscle synergy[J]. Biomed Signal Process Control, 2022, 77: 103695.
doi: 10.1016/j.bspc.2022.103695 |
[27] |
YOKOYAMA H, OGAWA T, KAWASHIMA N, et al. Distinct sets of locomotor modules control the speed and modes of human locomotion[J]. Sci Rep, 2016, 6: 36275.
doi: 10.1038/srep36275 pmid: 27805015 |
[28] |
KIM M, KIM Y, KIM H, et al. Specific muscle synergies in national elite female ice hockey players in response to unexpected external perturbation[J]. J Sports Sci, 2018, 36(3): 319-325.
doi: 10.1080/02640414.2017.1306090 |
[29] | 熊启亮. 婴幼儿膝爬运动功能发育状态对肌肉收缩及关节运动协同模式的影响[D]. 重庆: 重庆大学, 2019. |
XIONG Q L. Research of motor skill development alters muscle synergy and joint kinematics in human infant crawling[D]. Chongqing: Chongqing University, 2019. | |
[30] |
SHI H, REN S, MIAO X, et al. The effect of cognitive loading on the lower extremity movement coordination variability in patients with anterior cruciate ligament reconstruction[J]. Gait Posture, 2021, 84: 141-147.
doi: 10.1016/j.gaitpost.2020.10.028 pmid: 33321410 |
[31] |
WAHLSTEDT C, RASMUSSEN-BARR E. Anterior cruciate ligament injury and ankle dorsiflexion[J]. Knee Surg Sports Traumatol Arthrosc, 2015, 23(11): 3202-3207.
doi: 10.1007/s00167-014-3123-1 |
[32] | ANSA I, HUFSA T, SOMIA F, et al. Gait analysis among patients with quadriceps weakness after anterior cruciate ligament reconstruction post 9 months[J]. Foun Univ J Rehabil, 2023, 3(2): 58-65. |
[33] | URSEI M E, ACCADBLED F, SCANDELLA M, et al. Foot and ankle compensation for anterior cruciate ligament deficiency during gait in children[J]. Orthop Traumatol Surg Res, 2020, 6(1): 179-183. |
[34] |
XERGIA S A, PAPPAS E, ZAMPELI F, et al. Asymmetries in functional hop tests, lower extremity kinematics, and isokinetic strength persist 6 to 9 months following anterior cruciate ligament reconstruction[J]. J Orthop Sports Phys Ther, 2013, 43(3): 154-162.
doi: 10.2519/jospt.2013.3967 |
[35] | 魏梦力, 钟亚平, 吴倩. 跑步疲劳进程中人体下肢肌肉协同模式变化[J]. 中国康复医学杂志(待发表). |
WEI M L, ZHONG Y P, WU Q. Changes of muscle synergy mode of human lower limbs during a fatiguing run[J]. (in print). Chin J Rehabil Med. | |
[36] | SHAHARUDIN S, AGRAWAL S. Muscle synergies during incremental rowing VO2max test of collegiate rowers and untrained subjects[J]. Br J Sports Med, 2015, 56(9): 980-989. |
[37] |
LEWEK M, RUDOLPH K, AXE M, et al. The effect of insufficient quadriceps strength on gait after anterior cruciate ligament reconstruction[J]. Clin Biomech (Bristol, Avon), 2002, 17(1): 56-63.
doi: 10.1016/S0268-0033(01)00097-3 |
[38] | HAJILOO B, ANBARIAN M, ESTAEILI H, et al. The effects of fatigue on synergy of selected lower limb muscles during running[J]. J Biomech, 2020, 103(4): 1-6. |
[39] |
HARATO K, NIKI Y, KUDO Y, et al. Effect of unstable meniscal injury on three-dimensional knee kinematics during gait in anterior cruciate ligament-deficient patients[J]. Knee, 2015, 22(5): 395-399.
doi: 10.1016/j.knee.2015.03.010 pmid: 26006771 |
[1] | ZHAO Panchao, JI Zhongqiu, JIANG Guiping, WEN Ruixiang. Influence of different tasks on gait characteristics and task cost in early childhood [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1072-1082. |
[2] | HU Xiaoshi, ZHANG Qi, YUE Qing, LIANG Yanhua, LI Xiaosong, FENG Amei, ZHANG Yanqing. Effect of orthopedic elastic bandages on gait symmetry and walking ability in children with spastic hemiplegic cerebral palsy [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1083-1089. |
[3] | MA Shengnan, KE Jingyue, DONG Hongming, LI Jianping, ZHANG Honghao, LIU Chao, SHEN Shuang, LI Guqiang. Effect of core stability training on dynamic balance and surface electromyography after anterior cruciate ligament reconstruction [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(8): 882-889. |
[4] | ZHANG Yibin, LÜ Jie, YU Hongliu. Gait phase recognition in intelligent above-knee prosthesis based on fuzzy logic algorithm [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(8): 896-902. |
[5] | WU Guangyan, ZHANG Ran, WANG Lu, YU Ge, CHEN Yaping. Effect of core muscle motor control training on postpartum diastasis recti abdominis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(8): 948-953. |
[6] | WANG Yiji, ZHOU Hongjun, HE Zejia, LIU Genlin, ZHENG Ying, HAO Chunxia, WEI Bo, KANG Haiqiong, ZHANG Ying, LU Xiaolei, YUAN Yuan, MENG Qianru. Relationship between symmetry of lower limb function and gait symmetry in patients with incomplete spinal cord injury [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(6): 639-645. |
[7] | ZHANG Yibin, LI Jianfeng, YU Hongliu. A microprocessor-controlled prosthetic knee and its gait symmetry assessment [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(4): 402-407. |
[8] | WANG Fang, YANG Tao, HE Yaoguang, CAO Zijun, LIU Guoqing, HU Jun, ZHANG Jianguo, FAN Yubo. Design of variable stiffness insole based on diabetics plantar pressure during gait period [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(4): 408-415. |
[9] | MA Hongying, LIU Jianjun, HE Xuejin, WANG Yuxiang. Effect of rhythmic auditory stimulation on gait of patients with cerebral palsy: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(12): 1386-1394. |
[10] | MA Yubao,WANG Chenxi,GAO Weiguang,FAN Zhijiao,MA Quansheng,SUN Fenglong. Effects of surface sensation training on foot deflection and plantar impulse after anterior cruciate ligament reconstruction [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(9): 1096-1103. |
[11] | LI Siqi,ZHANG Yuling,YANG Jiantao. Estimation of joint torques in human gait based on Gaussian process [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(8): 989-992. |
[12] | CHAI Li,WANG Mei. Effect of track body weight support walking training on lower limb motor function in stroke patients: based on ICF Core Set for Stroke [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(6): 653-658. |
[13] | HUANG Zhaoxin,ZHANG Yi,CUI Chenxi,ZHU Xiaojing,XIAO Xiaofei. Biomechanical analysis of in-toeing gait in young females based on ICF [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(12): 1459-1465. |
[14] | WANG Ya'nan,ZHANG Tong,DU Xuejing,ZHU Xiaomin,LIU Yuanmin. Correlation between gait parameters and balance in stroke hemiplegic patients [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(1): 38-43. |
[15] | ZHANG Jun-xia,SHAO Yang-yang,WANG Zhe-hao,YANG Fang. Gait Characteristics during Horizontal Obstacle Crossing [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2021, 27(7): 745-750. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 333
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 214
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
|