Chinese Journal of Rehabilitation Theory and Practice ›› 2025, Vol. 31 ›› Issue (5): 581-591.doi: 10.3969/j.issn.1006-9771.2025.05.011
Previous Articles Next Articles
LAI Haifang1, LIU Benhui2, CUI Lijun1, HUA Longang1, XIE Qing1()
Received:
2025-03-17
Revised:
2025-03-19
Published:
2025-05-25
Online:
2025-05-26
Contact:
XIE Qing, E-mail: ruijin_xq@163.com
Supported by:
CLC Number:
LAI Haifang, LIU Benhui, CUI Lijun, HUA Longang, XIE Qing. Application of transcranial magnetic stimulation in rehabilitation field: a bibliometric analysis from 2014 to 2024[J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(5): 581-591.
Table 2
Top ten research institutions with the largest number of publications and centrality"
排名 | 机构 | 国家 | 发文量/n | 中心性 |
---|---|---|---|---|
1 | Harvard University (including Harvard Medical School) | 美国 | 55 | 0.10 |
2 | Jikei University | 日本 | 29 | 0.06 |
3 | University System of Ohio | 美国 | 28 | 0.04 |
4 | Emory University | 美国 | 24 | 0.12 |
5 | Capital Medical University | 中国 | 19 | 0.15 |
6 | University of Minnesota System | 美国 | 18 | 0.14 |
7 | University of California System | 美国 | 18 | 0.10 |
8 | National Institutes of Health (NIH) | 美国 | 18 | 0.25 |
9 | Sun Yat Sen University | 中国 | 18 | 0.10 |
10 | Spaulding Rehabilitation Hospital | 美国 | 17 | 0.25 |
Table 3
Top ten authors with the most citation frequency"
排名 | 作者 | 被引次数/n | 中心性 |
---|---|---|---|
1 | Simone Rossi | 254 | 0.01 |
2 | Jean-Pascal Lefaucheur | 253 | 0.00 |
3 | Paolo M Rossini | 228 | 0.03 |
4 | Cathy M Stinear | 226 | 0.06 |
5 | Eman M Khedr | 214 | 0.00 |
6 | Nobuyuki Takeuchi | 166 | 0.03 |
7 | Vincenzo Di Lazzaro | 159 | 0.09 |
8 | Nagako Murase | 157 | 0.05 |
9 | Felipe Fregni | 154 | 0.00 |
10 | Yingzu Huang | 153 | 0.14 |
Table 4
Top ten keywords with highest frequency"
排名 | 关键词 | 频次/n | 中心性 |
---|---|---|---|
1 | stroke | 240 | 0.24 |
2 | noninvasive brain stimulation | 180 | 0.19 |
3 | plasticity | 127 | 0.10 |
4 | cortical excitability | 126 | 0.11 |
5 | theta burst stimulation | 124 | 0.09 |
6 | upper limb | 90 | 0.02 |
7 | motor evoked potentials | 85 | 0.04 |
8 | induced movement therapy | 72 | 0.07 |
9 | cortical reorganization | 58 | 0.21 |
10 | aphasia | 30 | 0.12 |
Table 5
Keywords cluster labels and main keywords"
聚类号 | 聚类标签 | 轮廓值 | 年份 | 关键词 |
---|---|---|---|---|
#0 | deglutition disorders | 0.795 | 2017 | brain computer interface; cognitive-behavioral therapy; assessment |
#1 | cortical excitability | 0.892 | 2016 | animal models; reach to grasp task; periinfarct depolarizations |
#2 | repetitive transcranial magnetic stimulation | 0.851 | 2016 | neural bypass; lesion size; intraoperative neurophysiological monitoring |
#3 | motor imagery | 0.851 | 2015 | electromyography; combined; harnessing neuroplasticity; child |
#4 | quality of life | 0.937 | 2017 | integrative medicine; spinal cord injuries; traditional Chinese medicine |
#5 | functional near-infrared spectroscopy | 0.901 | 2019 | rhythms; prefrontal cortex activity; head injury; information |
#6 | electrical stimulation | 0.918 | 2017 | rehabilitation methods; premotor; repetitive transcranial stimulation |
#7 | upper extremity | 0.842 | 2018 | systems biology; hand movements; survivors; neurotization;motor unit |
#8 | mirror therapy | 0.931 | 2019 | video game;ambulation; short-interval intracortical inhibition |
#9 | corticomotor excitability | 0.952 | 2020 | post-stroke cognitive impairment; sensory stimulation; 3D gait analysis |
#10 | cognitive impairment | 0.885 | 2020 | research trends; sensorimotor resting-state networks; brain health |
#11 | transcranial direct current stimulation | 0.879 | 2016 | nonlesioned hemisphere; oropharyngeal dysphagia; multisensory integration |
#12 | visuospatial neglect | 0.962 | 2017 | cognitive deficits; theta-burst transcranial magnetic stimulation; cerebrovascular disease/accident and stroke |
#13 | ischemic stroke | 0.974 | 2017 | speech and language therapy; sequelae; elderly |
[1] | KLOMJAI W, KATZ R, LACKMY-VALLÉE A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS)[J]. Ann Phys Rehabil Med, 2015, 8(4): 208-213. |
[2] | DIONÍSIO A, DUARTE I C, PATRÍCIO M, et al. Transcranial magnetic stimulation as an intervention tool to recover from language, swallowing and attentional deficits after stroke: a systematic review[J]. Cerebrovasc Dis, 2018, 46(3/4): 178-185. |
[3] | SOMAA F A, DE GRAAF T A, SACK A T. Transcranial magnetic stimulation in the treatment of neurological diseases[J]. Front Neurol, 2022, 20(13): 793253. |
[4] | SYNNESTVEDT M B, CHEN C, HOLMES J H. CiteSpace II: visualization and knowledge discovery in bibliographic databases[J]. AMIA Ann Symp Proc, 2005: 724-728. |
[5] | 陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015, 33(2): 242-253. |
CHEN Y, CHEN C M, LIU Z Y, et al. The methodology function of CiteSpace mapping knowledge domains[J]. Stud Sci Sci, 2015, 33(2): 242-253. | |
[6] | OZEK B, LU Z, POUROMRAN F, et al. Analysis of pain research literature through keyword co-occurrence networks[J]. PLOS Digit Health, 2023, 2(9): e0000331. |
[7] | RADHAKRISHNAN S, ERBIS S, ISAACS J A, et al. Novel keyword co-occurrence network-based methods to foster systematic reviews of scientific literature[J]. PLoS One, 2017, 12(3): e0172778. |
[8] | CURTIN A, TONG S, SUN J, et al. A systematic review of integrated functional near-infrared spectroscopy (fNIRS) and transcranial magnetic stimulation (TMS) studies[J]. Front Neurosci, 2019, 13: 84. |
[9] | CHEN S Y, TSOU M H, CHEN K Y, et al. Impact of repetitive transcranial magnetic stimulation on cortical activity: a systematic review and meta-analysis utilizing functional near-infrared spectroscopy evaluation[J]. J Neuroeng Rehabil, 2024, 21(1): 108. |
[10] | GRANDJEAN J, DEROSIERE G, VASSILIADIS P, et al. Towards assessing corticospinal excitability bilaterally: validation of a double-coil TMS method[J]. J Neurosci Methods, 2018, 293: 162-168. |
[11] |
MOEZZI B, SCHAWORONKOW N, PLOGMACHER L, et al. Simulation of electromyographic recordings following transcranial magnetic stimulation[J]. J Neurophysiol, 2018, 120(5): 2532-2541.
doi: 10.1152/jn.00626.2017 pmid: 29975165 |
[12] | BADOIU A, MITRAN S I, CATALIN B, et al. From molecule to patient rehabilitation: the impact of transcranial direct current stimulation and magnetic stimulation on stroke: a narrative review[J]. Neural Plast, 2023: 5044065. |
[13] | EDWARDS J D, DOMINGUEZ-VARGAS A U, ROSSO C, et al. A translational roadmap for transcranial magnetic and direct current stimulation in stroke rehabilitation: consensus-based core recommendations from the third stroke recovery and rehabilitation roundtable[J]. Neurorehabil Neural Repair, 2024, 38(1): 19-29. |
[14] |
KWAKKEL G, VEERBEEK J M, VAN WEGEN E E, et al. Constraint-induced movement therapy after stroke[J]. Lancet Neurol, 2015, 14(2): 224-234.
doi: 10.1016/S1474-4422(14)70160-7 pmid: 25772900 |
[15] |
KANG Y J, KU J, KIM H J, et al. Facilitation of corticospinal excitability according to motor imagery and mirror therapy in healthy subjects and stroke patients[J]. Ann Rehabil Med, 2011, 35(6): 747-758.
doi: 10.5535/arm.2011.35.6.747 pmid: 22506202 |
[16] | BELLO U M, WINSER S J, CHAN C C H. Role of kinaesthetic motor imagery in mirror-induced visual illusion as intervention in post-stroke rehabilitation[J]. Rev Neurosci, 2020, 31(6): 659-674. |
[17] | 贾杰. "中枢-外周-中枢"闭环康复——脑卒中后手功能康复新理念[J]. 中国康复医学杂志, 2016, 31(11): 1180-1182. |
JIA J. "Central-Periphery-Center" closed loop rehabilitation: a new concept of hand function rehabilitation after stroke[J]. Chin J Rehabil Med, 2016, 31(11): 1180-1182. | |
[18] | TU W J, WANG L D. Special Writing Group of China Stroke Surveillance Report. China stroke surveillance report 2021[J]. Mil Med Res, 2023, 10(1): 33. |
[19] |
RAJSIC S, GOTHE H, BORBA H H, et al. Economic burden of stroke: a systematic review on post-stroke care[J]. Eur J Health Econ, 2019, 20(1): 107-134.
doi: 10.1007/s10198-018-0984-0 pmid: 29909569 |
[20] | DU J, YANG F, HU J, et al. Effects of high- and low-frequency repetitive transcranial magnetic stimulation on motor recovery in early stroke patients: evidence from a randomized controlled trial with clinical, neurophysiological and functional imaging assessments[J]. Neuroimage Clin, 2019, 21: 101620. |
[21] | WANG C, ZENG Q, YUAN Z, et al. Effects of low-frequency (0.5 Hz) and high-frequency (10 Hz) repetitive transcranial magnetic stimulation on neurological function, motor function, and excitability of cortex in ischemic stroke patients[J]. Neurologist, 2023, 28(1): 11-18. |
[22] | KONDO T, YAMADA N, MOMOSAKI R, et al. Comparison of the effect of low-frequency repetitive transcranial magnetic stimulation with that of theta burst stimulation on upper limb motor function in poststroke patients[J]. Biomed Res Int, 2017: 4269435. |
[23] | LONG H, WANG H, ZHAO C, et al. Effects of combining high- and low-frequency repetitive transcranial magnetic stimulation on upper limb hemiparesis in the early phase of stroke[J]. Restor Neurol Neurosci, 2018, 36(1): 21-30. |
[24] | CHEN S, ZHANG X, CHEN X, et al. The assessment of interhemispheric imbalance using functional near-infrared spectroscopic and transcranial magnetic stimulation for predicting motor outcome after stroke[J]. Front Neurosci, 2023, 17: 1231693. |
[25] | KWON T G, PARK E, KANG C, et al. The effects of combined repetitive transcranial magnetic stimulation and transcranial direct current stimulation on motor function in patients with stroke[J]. Restor Neurol Neurosci, 2016, 34(6): 915-923. |
[26] | CHO J Y, LEE A, KIM M S, et al. Dual-mode noninvasive brain stimulation over the bilateral primary motor cortices in stroke patients[J]. Restor Neurol Neurosci, 2017, 35(1): 105-114. |
[27] | LEE J, PARK E, LEE A, et al. Modulating brain connectivity by simultaneous dual-mode stimulation over bilateral primary motor cortices in subacute stroke patients[J]. Neural Plast, 2018: 1458061. |
[28] | ZHAO Q, LI H, LIU Y, et al. Non-invasive brain stimulation associated mirror therapy for upper-limb rehabilitation after stroke: systematic review and meta-analysis of randomized clinical trials[J]. Front Neurol, 2022, 13: 918956. |
[29] | SHAH-BASAK P, BOUKRINA O, LI X R, et al. Targeted neurorehabilitation strategies in post-stroke aphasia[J]. Restor Neurol Neurosci, 2023, 41(3-4): 129-191. |
[30] |
SHEPPARD S M, SEBASTIAN R. Diagnosing and managing post-stroke aphasia[J]. Expert Rev Neurother, 2021, 21(2): 221-234.
doi: 10.1080/14737175.2020.1855976 pmid: 33231117 |
[31] |
ABO M, KAKUDA W, WATANABE M, et al. Effectiveness of low-frequency rTMS and intensive speech therapy in poststroke patients with aphasia: a pilot study based on evaluation by fMRI in relation to type of aphasia[J]. Eur Neurol, 2012, 68(4): 199-208.
doi: 10.1159/000338773 pmid: 22948550 |
[32] | ZHENG K, XU X, JI Y, et al. Continuous theta burst stimulation-induced suppression of the right fronto-thalamic-cerebellar circuit accompanies improvement in language performance in poststroke aphasia: a resting-state fMRI study[J]. Front Aging Neurosci, 2023, 14: 1079023. |
[33] |
DAMMEKENS E, VANNESTE S, OST J, et al. Neural correlates of high frequency repetitive transcranial magnetic stimulation improvement in post-stroke non-fluent aphasia: a case study[J]. Neurocase, 2014, 20(1): 1-9.
doi: 10.1080/13554794.2012.713493 pmid: 22963195 |
[34] | REN J, REN W, ZHOU Y, et al. Personalized functional imaging-guided rTMS on the superior frontal gyrus for post-stroke aphasia: a randomized sham-controlled trial[J]. Brain Stimul, 2023, 16(5): 1313-1321. |
[35] | HARA T, ABO M, KAKITA K, et al. The effect of selective transcranial magnetic stimulation with functional near-infrared spectroscopy and intensive speech therapy on individuals with post-stroke aphasia[J]. Eur Neurol, 2017, 77(3/4): 186-194. |
[36] | WANG C C, WANG C P, TSAI P Y, et al. Inhibitory repetitive transcranial magnetic stimulation of the contralesional premotor and primary motor cortices facilitate poststroke motor recovery[J]. Restor Neurol Neurosci, 2014, 32(6): 825-835. |
[37] | CAI G, XU J, ZHANG C, et al. Identifying biomarkers related to motor function in chronic stroke: a fNIRS and TMS study[J]. CNS Neurosci Ther, 2024, 30(7): e14889. |
[38] | BEMBENEK J P, KURCZYCH K, KARLI NSKI M, et al. The prognostic value of motor-evoked potentials in motor recovery and functional outcome after stroke: a systematic review of the literature[J]. Funct Neurol, 2012, 27(2): 79-84. |
[39] | MRIDHA M F, DAS S C, KABIR M M, et al. Brain-computer interface: advancement and challenges[J]. Sensors (Basel), 2021, 21(17): 5746. |
[40] | SÁNCHEZ-CUESTA F J, ARROYO-FERRER A, GONZÁL EZ-ZAMORANO Y, et al. Clinical effects of Immersive multimodal BCI-VR training after bilateral neuromodulation with rtms on upper limb motor recovery after stroke. A study protocol for a randomized controlled trial[J]. Medicina (Kaunas), 2021, 57(8): 736. |
[41] | AFONSO M, SÁNCHEZ-CUESTA F, GONZÁLEZ-ZAMORANO Y, et al. Investigating the synergistic neuromodulation effect of bilateral rTMS and VR brain-computer interfaces training in chronic stroke patients[J]. J Neural Eng, 2024, 21(5). doi: 10.1088/1741-2552/ad8836. |
[42] | JOHNSON N N, CAREY J, EDELMAN B J, et al. Combined rTMS and virtual reality brain-computer interface training for motor recovery after stroke[J]. J Neural Eng, 2018, 15(1): 016009. |
[1] | YI Ling, ZHOU Jing, LIANG Yongsheng, CHEN Xuefen, CAO Yanjing. Developing on-campus training bases for speech and hearing rehabilitation programs in higher vocational colleges [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(5): 529-538. |
[2] | WU Aihong, ZHANG Qing, WU Jiaming, XIE Junxia, WU Dang. Construction of a competency-based and functioning-oriented training curriculum system for inclusive education teachers in primary and secondary schools [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(5): 539-547. |
[3] | ZENG Bin, GUO Shuang, YE Haiyan, YE Jinqun, XU Zihan, XU Guangqing, ZHANG Lei. Investigation for research competency of undergraduate interns in rehabilitation therapy using WHO rehabilitation competency framework [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(5): 548-552. |
[4] | SHI Bin, XU Ning, ZHOU Guangxue. Application of mirror therapy in motor function rehabilitation for stroke: a bibliometric analysis from 2005 to 2024 [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(5): 561-572. |
[5] | ZHOU Bo, SHE Wanbin, XIANG Songbai. Application of artificial intelligence in diagnosis and intervention for children with autism spectrum disorder: a bibliometric analysis [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(5): 573-580. |
[6] | ZHANG Qing, WU Jiaming, JIA Wenrong, YU Fayou. Competency framework and contents for primary and secondary school teachers in inclusive education settings based on RCF and ICF [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(4): 406-414. |
[7] | GUAN Shan, SUN Meili, GUAN Yi, XUE Yifan, ZHONG Yuliang⁴, LI Xinqin. Developing a curriculum framework for vocational competency in college students with disabilities: based on RCF and ICF [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(4): 415-422. |
[8] | LIU Pengcheng, QU Mengjian, LONG Liping, WANG Yalin, YANG Mingzhu, LIU Peiyong, ZHOU Jun, LIU Jing. Effect of pneumatic and electric hand training system with multiple sensory stimulation modalities combined with low-frequency repetitive transcranial magnetic stimulation on hand movement and tactile pressure sensation in patients with stroke [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(4): 458-465. |
[9] | ZHU Haifeng, QIAN Guifeng, DAN Yuqin, GAO Jingchun, TANG Tingting, HUO Ming, XIE Shaodong. Ultrasound-guided sacral canal injection of Neurotropin and comprehensive rehabilitation for the aftermath of severe sacral plexus injury: a case report [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(4): 476-483. |
[10] | LI Fan, LIN Keyu, XIAO Yongtao. Relationship between metaphor comprehension and theory of mind in children with autism spectrum disorder [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(4): 484-489. |
[11] | SHEN Junfan, GENG Ayan, HU Wenxuan, KAN Chaojie, WANG Tong, GUO Chuan. Application of corticomuscular coherence in the field of rehabilitation medicine: a bibliometric analysis [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(3): 274-286. |
[12] | FENG Juan, LI Xintong, CAI Jiaoyan, ZHAO Shengguo, PAN Weimin. Effect of proprioceptive training on anterior cruciate ligament injury from 2015 to 2024: a bibliometric analysis [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(3): 287-295. |
[13] | ZHU Chenchen, LIAO Sisi, LIU Yue, PAN Jianming, ZHU Zhulin, XIA Bihua, XIE Ying. Policy framework and support systems for early family education and rehabilitation for infants and toddlers with developmental impairments [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(3): 324-330. |
[14] | CHEN Yuanyue, ZHU Jun, HU Jingjun, GUO Chuan, ZHU Lan. Intervention and duration of work-related injury rehabilitation, and related factors [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(3): 348-355. |
[15] | CHEN Yudong, DU Xiaoxia, HUANG Fubiao, YE Changqing, MA Lin, WANG Yunlei, WU Xiaoli. Assessment of rehabilitation of corpus callosum infarction: a case report based on functional near infrared spectroscopy [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(3): 365-372. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|