Chinese Journal of Rehabilitation Theory and Practice ›› 2025, Vol. 31 ›› Issue (9): 1066-1073.doi: 10.3969/j.issn.1006-9771.2025.09.010
Previous Articles Next Articles
GAO Yunhan1,2, HOU Shanshan1,2, WANG Xinyu1,2, ZHU Chongtian1,2()
Received:
2025-07-11
Revised:
2025-09-11
Published:
2025-09-25
Online:
2025-10-10
Contact:
ZHU Chongtian, E-mail: Supported by:
CLC Number:
GAO Yunhan, HOU Shanshan, WANG Xinyu, ZHU Chongtian. Effect of brain-computer interface on upper limb motor dysfunction in stroke patients based on functional near-infrared spectroscopy[J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(9): 1066-1073.
Table 1
Comparison of baseline data between two groups"
组别 | n | 性别(男/女)/n | 年龄/岁 | 病程/月 | 卒中类型 (出血/梗死)/n | 偏瘫侧 (左/右)/n | Brunstrom评定(Ⅱ/Ⅲ/Ⅳ/Ⅴ期) | |
---|---|---|---|---|---|---|---|---|
手 | 上肢 | |||||||
对照组 | 20 | 18/2 | 55.16±15.99 | 5.63±3.70 | 7/13 | 12/8 | 6/11/2/1 | 8/8/2/2 |
BCI组 | 20 | 17/3 | 52.55±13.38 | 4.90±3.97 | 6/14 | 13/7 | 6/8/4/2 | 10/5/3/2 |
χ2/t值 | 0.229 | 0.553 | 0.594 | 0.114 | 0.107 | 1.474 | 1.115 | |
P值 | 1.000 | 0.583 | 0.556 | 1.000 | 1.000 | 0.688 | 0.774 |
Table 2
Comparison of MBI and FMA-UE scores between two groups pre- and post-treatment"
变量 | 组别 | n | 测试 | t值 | P值 | |
---|---|---|---|---|---|---|
MBI评分 | 对照组 | 20 | 前测 | 49.75±14.19 | -8.904 | < 0.001 |
后测 | 55.25±13.91 | |||||
BCI组 | 20 | 前测 | 46.25±12.66 | -11.174 | < 0.001 | |
后测 | 64.50±7.93 | |||||
治疗前两组均值差 | 3.50±4.25 | 0.823 | 0.415 | |||
治疗后两组均值差 | -9.25±3.58 | -2.584 | 0.014 | |||
FMA-UE评分 | 对照组 | 20 | 前测 | 26.75±6.03 | -9.566 | < 0.001 |
后测 | 30.85±5.80 | |||||
BCI组 | 20 | 前测 | 27.35±7.10 | -10.705 | < 0.001 | |
后测 | 40.25±6.74 | |||||
治疗前两组均值差 | -0.60±2.08 | -0.288 | 0.775 | |||
治疗后两组均值差 | -9.40±1.99 | -4.728 | < 0.001 |
Table 3
Comparison of HbO₂ levels in different ROIs between two groups pre- and post-treatment 单位:mmol/(L⋅mm)"
ROI | 组别 | n | 测试 | t值 | P值 | |
---|---|---|---|---|---|---|
PMC/SMA | 对照组 | 20 | 前测 | 0.013±0.023 | -0.599 | 0.564 |
后测 | 0.016±0.015 | |||||
BCI组 | 20 | 前测 | 0.023±0.032 | -3.965 | 0.003 | |
后测 | 0.051±0.027 | |||||
治疗前两组均值差 | -0.010±0.012 | -0.777 | 0.447 | |||
治疗后两组均值差 | -0.035±0.010 | -3.630 | 0.002 | |||
PSC | 对照组 | 20 | 前测 | 0.025±0.024 | -0.647 | 0.534 |
后测 | 0.032±0.030 | |||||
BCI组 | 20 | 前测 | 0.051±0.048 | 1.196 | 0.259 | |
后测 | 0.027±0.053 | |||||
治疗前两组均值差 | -0.026±0.017 | -1.529 | 0.143 | |||
治疗后两组均值差 | 0.004±0.019 | 0.229 | 0.821 | |||
M1 | 对照组 | 20 | 前测 | 0.036±0.032 | 1.162 | 0.275 |
后测 | 0.019±0.026 | |||||
BCI组 | 20 | 前测 | 0.048±0.025 | 1.108 | 0.294 | |
后测 | 0.032±0.050 | |||||
治疗前两组均值差 | -0.012±0.013 | -0.974 | 0.342 | |||
治疗后两组均值差 | -0.013±0.018 | -0.725 | 0.478 |
[1] |
LI S, JIANG D, ROSENKRANS Z T, et al. Aptamer-conjugated framework nucleic acids for the repair of cerebral ischemia-reperfusion injury[J]. Nano Lett, 2019, 19(10): 7334-7341.
doi: 10.1021/acs.nanolett.9b02958 pmid: 31518140 |
[2] |
YI X, ZHU L, SUI G, et al. Inflammation and endothelial function relevant genetic polymorphisms and carotid plaque in Chinese population[J]. J Atheroscler Thromb, 2020, 27(9): 978-994.
doi: 10.5551/jat.53074 pmid: 31956237 |
[3] | SUN X, WANG D, ZHANG T, et al. Eugenol attenuates cerebral ischemia-reperfusion injury by enhancing autophagy via AMPK-mTOR-P70S6K pathway[J]. Front Pharmacol, 2020, 11: 84. |
[4] |
HANNAN M A, DASH R, SOHAG A A M, et al. Neuroprotection against oxidative stress: phytochemicals targeting TrkB signaling and the Nrf2-ARE antioxidant system[J]. Front Mol Neurosci, 2020, 13: 116.
doi: 10.3389/fnmol.2020.00116 pmid: 32714148 |
[5] |
WEI P, WANG P, LI B, et al. Divergence and convergence of cerebral ischemia pathways profile deciphers differential pure additive and synergistic mechanisms[J]. Front Pharmacol, 2020, 11: 80.
doi: 10.3389/fphar.2020.00080 pmid: 32161541 |
[6] | XU L, JI H, JIANG Y, et al. Exosomes derived from CircAkap7-modified adipose-derived mesenchymal stem cells protect against cerebral ischemic injury[J]. Front Cell Dev Biol, 2020, 8: 569977. |
[7] |
RODGERS H, BOSOMWORTH H, KREBS H I, et al. Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial[J]. Lancet, 2019, 394(10192): 51-62.
doi: S0140-6736(19)31055-4 pmid: 31128926 |
[8] |
REYNOLDS C, OSUAGWU B A, VUCKOVIC A. Influence of motor imagination on cortical activation during functional electrical stimulation[J]. Clin Neurophysiol, 2015, 126(7): 1360-1369.
doi: 10.1016/j.clinph.2014.10.007 pmid: 25454278 |
[9] | CARINO-ESCOBAR R I, CARRILLO-MORA P, VALDÉS-CRISTERNA R, et al. Longitudinal analysis of stroke patients' brain rhythms during an intervention with a brain-computer interface[J]. Neural Plast, 2019, 2019: 7084618. |
[10] | LIU Z, TANG J, GAO B, et al. Neural signal analysis with memristor arrays towards high-efficiency brain-machine interfaces[J]. Nat Commun, 2020, 11(1): 4234. |
[11] |
PICHIORRI F, MATTIA D. Brain-computer interfaces in neurologic rehabilitation practice[J]. Handb Clin Neurol, 2020, 168: 101-116.
doi: B978-0-444-63934-9.00009-3 pmid: 32164846 |
[12] | MIAO Y, CHEN S, ZHANG X, et al. BCI-based rehabilitation on the stroke in sequela stage[J]. Neural Plast, 2020, 2020: 8882764. |
[13] |
GUERRA Z F, LUCCHETTI A L G, LUCCHETTI G. Motor imagery training after stroke: a systematic review and meta-analysis of randomized controlled trials[J]. J Neurol Phys Ther, 2017, 41(4): 205-214.
doi: 10.1097/NPT.0000000000000200 pmid: 28922311 |
[14] | SINHA A M, NAIR V A, PRABHAKARAN V. Brain-computer interface training with functional electrical stimulation: facilitating changes in interhemispheric functional connectivity and motor outcomes post-stroke[J]. Front Neurosci, 2021, 15: 670953. |
[15] | LEE S H, KIM S S, LEE B H. Action observation training and brain-computer interface controlled functional electrical stimulation enhance upper extremity performance and cortical activation in patients with stroke: a randomized controlled trial[J]. Physiother Theory Pract, 2022, 38(9): 1126-1134. |
[16] | PINTI P, TACHTSIDIS I, HAMILTON A, et al. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience[J]. Ann N Y Acad Sci, 2020, 1464(1): 5-29. |
[17] |
刘佳琪, 侯闪闪, 汪鑫煜, 等. 不同吞咽时期大脑皮质激活特征:基于功能性近红外光谱技术[J]. 中国康复理论与实践, 2024, 30(6) : 709-718.
doi: 10.3969/j.issn.1006-9771.2024.06.011 |
LIU J Q, HOU S S, WANG X Y, et al. Characteristics of cerebral cortex activation in different swallowing periods based on near-infrared spectroscopy[J]. Chin J Rehabil Theory Pract, 2024, 30(6): 709-718. | |
[18] |
李晁金子, 黄富表, 杜晓霞, 等. 功能性近红外光谱技术在利手、非利手主动抓握-释放任务下脑区激活研究中的应用[J]. 中国康复理论与实践, 2021, 27(9): 1066-1071.
doi: 10.3969/j.issn.1006-9771.2021.09.010 |
LI C J Z, HUANG F B, DU X X, et al. Application of functional near-infrared spectroscopy in brain area activation research: dominant and non-dominant hand under active grasp-release task[J]. Chin J Rehabil Theory Pract, 2021, 27(9): 1066-1071. | |
[19] | 中华医学会神经病学分会,中华医学会神经病学分会脑血管病学组. 中国各类主要脑血管病诊断要点2019[J]. 中华神经科杂志, 2019, 52(9): 710-715. |
Chinese Society of Neurology, Chinese Stroke Society. Diagnostic criteria of cerebrovascular diseases in China (version 2019)[J]. Chin J Neurol, 2019, 52(9): 710-715. | |
[20] |
ANG K K, CHUA K S, PHUA K S, et al. A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke[J]. Clin EEG Neurosci, 2015, 46(4): 310-320.
doi: 10.1177/1550059414522229 pmid: 24756025 |
[21] | XUE J, REN F, SUN X, et al. A multifrequency brain network-based deep learning framework for motor imagery decoding[J]. Neural Plast, 2020, 2020: 8863223. |
[22] | RAMOS-MURGUIALDAY A, BROETZ D, REA M, et al. Brain-machine interface in chronic stroke rehabilitation: a controlled study[J]. Ann Neurol, 2013, 74(1): 100-108. |
[23] |
WANG A, TIAN X, JIANG D, et al. Rehabilitation with brain-computer interface and upper limb motor function in ischemic stroke: a randomized controlled trial[J]. Med, 2024, 5(6): 559-569.e554.
doi: 10.1016/j.medj.2024.02.014 pmid: 38642555 |
[24] |
HARRISON S J, HOUGH M, SCHMID K, et al. When coordinating finger tapping to a variable beat the variability scaling structure of the movement and the cortical BOLD signal are both entrained to the auditory stimuli[J]. Neuroscience, 2018, 392: 203-218.
doi: S0306-4522(18)30436-6 pmid: 29958941 |
[25] | MODI H N, SINGH H, FIORENTINO F, et al. Association of residents' neural signatures with stress resilience during surgery[J]. JAMA Surg, 2019, 154(10): e192552. |
[26] |
BHAMBHANI Y, FAN J L, PLACE N, et al. Electromyographic, cerebral, and muscle hemodynamic responses during intermittent, isometric contractions of the biceps brachii at three submaximal intensities[J]. Front Physiol, 2014, 5: 190.
doi: 10.3389/fphys.2014.00190 pmid: 24966837 |
[27] |
WILCOX T, HASLUP J A, BOAS D A. Dissociation of processing of featural and spatiotemporal information in the infant cortex[J]. Neuroimage, 2010, 53(4): 1256-1263.
doi: 10.1016/j.neuroimage.2010.06.064 pmid: 20603218 |
[28] |
KILTENI K, ANDERSSON B J, HOUBORG C, et al. Motor imagery involves predicting the sensory consequences of the imagined movement[J]. Nat Commun, 2018, 9(1): 1617.
doi: 10.1038/s41467-018-03989-0 pmid: 29691389 |
[29] |
FORNIA L, PUGLISI G, LEONETTI A, et al. Direct electrical stimulation of the premotor cortex shuts down awareness of voluntary actions[J]. Nat Commun, 2020, 11(1): 705.
doi: 10.1038/s41467-020-14517-4 pmid: 32019940 |
[30] | CHANG C Y, CHEN Y H, YEN N S. Nonlinear neuroplasticity corresponding to sports experience: a voxel-based morphometry and resting-state functional connectivity study[J]. Hum Brain Mapp, 2018, 39(11): 4393-4403. |
[31] |
BAI Z, FONG K N K, ZHANG J J, et al. Immediate and long-term effects of BCI-based rehabilitation of the upper extremity after stroke: a systematic review and meta-analysis[J]. J Neuroeng Rehabil, 2020, 17(1): 57.
doi: 10.1186/s12984-020-00686-2 pmid: 32334608 |
[32] | SCHULZ R, BRAASS H, LIUZZI G, et al. White matter integrity of premotor-motor connections is associated with motor output in chronic stroke patients[J]. Neuroimage Clin, 2015, 7: 82-86. |
[1] | WEI Jingyi, WANG Xiaojing, WANG Ran, WEI Chen, MA Sai, LIU Xihua. Effect of acupuncture synchronized speech training on post-stroke motor aphasia [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(9): 1000-1008. |
[2] | WANG Xiaojing, WEI Jingyi, WEI Chen, WANG Ran, MA Sai, LIU Xihua. Effect of synchronous acupuncture and articulation training on spastic dysarthria after stroke [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(9): 1009-1016. |
[3] | LUO Dandan, SHEN Min, WANG Sujuan, QIU Wengxin, ZHANG Yuxuan, WU Yun, WANG Shengxiao. Characterisation of whole-brain resting-state functional connectivity in children with Chinese developmental dyslexia [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(9): 1023-1031. |
[4] | ZHOU Xinyue, YE Ruixue, MA Yaqi, XU Ying, CAO Longyao, WANG Yulong. Researches on central post-stroke pain: a bibliometric analysis [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(9): 1038-1049. |
[5] | LOU Yantao, WANG Jiawei, XIAO Xiaofei, LI Yanhui. Comparison of effect of cold therapy at different temperature on upper limb delayed onset muscle soreness in young men [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(9): 1074-1082. |
[6] | GAO Fei, LIU Lixu, HU Xueyan, WU Xiaoli, YANG Lingyu, YANG Yuqi, YE Changqing, DU Xiaoxia. Effect of unilateral or bilateral transcranial direct current stimulation on post-stroke dysphagia [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(9): 993-999. |
[7] | ZHANG Ziang, CHEN Jing, SHEN Mengru, GENG Zongxiao, HAN Xue, ZHAO Xu, XU Lei. Comparison of effect of different types of exercise on gait and balance for stroke patients [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(8): 896-905. |
[8] | WANG Xiaofeng, HU Mengqiao, WANG Yan, WEI Kun, XU Wenzhu, REN Dan, MA Ye. Effect of exoskeleton robot-assisted gait training on lower limb function after stroke and spinal cord injury: a systematic review [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(8): 914-921. |
[9] | ZHANG Zihan, GUAN Jinzhi, HUANG Xing, ZHOU Li, ZHANG Yaxuan, ZHANG Mengyuan, CHANG Jingling. Characteristics of time-domain and time-frequency of Chinese word-picture matching task-related electroencephalogram in patients with post-stroke aphasia [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(8): 947-957. |
[10] | SUN Wanting, YASEN Ailipinai, GONG Xiang, XIAO Yue, GAN Zhaodan, LIU Mingjie, ZENG Lanting, MA Shuyue, LU Jun, XU Guangxu. Effect of high-frequency repetitive transcranial magnetic stimulation on upper limb function of stroke patients based on motor sequence learning [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(7): 812-821. |
[11] | SHAN Lei, LIU Ying, ZHANG Xin, CHI Qianqian, ZHU Xiaomin. Effect of accelerated intermittent theta burst stimulation on post-stroke depression [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(7): 822-829. |
[12] | LIU Lanqun, LI Yanli, LIANG Jiaqi, CHEN Shuang, LIU Huilin. Effect of scalp acupuncture combined with computer-assisted training on memory impairment after stroke [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(7): 862-868. |
[13] | LIU Xuan, GAO Ling, CHU Fengming, CHEN Jie, ZHANG Ming. Effect of brain-computer interface combined with upper limb rehabilitation robot on upper limb function of stroke patients [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(6): 703-710. |
[14] | ZHOU Tiantian, ZHANG Tong, ZHANG Qi, LIANG Yanhua, ZHANG Yanqing, YUE Qing, LI Sijia. Effect of Lokomat robotic-assisted gait training on lower limb motor function in children with hemiplegia [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(6): 711-720. |
[15] | FU Guojun, YU Xiufang, LÜ Xin, JI Lu, LIU Huaqing. Effect of composite electromagnetic stimulation combined with chin tuck against resistance on post-stroke patients with dysphagia [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(6): 721-728. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|