Chinese Journal of Rehabilitation Theory and Practice ›› 2025, Vol. 31 ›› Issue (9): 1083-1091.doi: 10.3969/j.issn.1006-9771.2025.09.012
Previous Articles Next Articles
WANG Juan1,2, ZHANG Qing3, ZHOU Changlin1,2, CHEN Changyun1,2, DAI Feng1,2, SUN Xianghong1,2, ZOU Ting1,2, WANG Jian1,2, GAO Junkai1,2, XU Weidong3()
Received:
2025-06-09
Revised:
2025-09-07
Published:
2025-09-25
Online:
2025-10-10
Contact:
XU Weidong, E-mail: Supported by:
CLC Number:
WANG Juan, ZHANG Qing, ZHOU Changlin, CHEN Changyun, DAI Feng, SUN Xianghong, ZOU Ting, WANG Jian, GAO Junkai, XU Weidong. Effect of different intensity neuromuscular training on muscle strength and knee joint function of patients after anterior cruciate ligament reconstruction[J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(9): 1083-1091.
Table 1
Comparison of baseline data between two groups"
组别 | n | 性别(男/女)/n | 年龄/岁 | 身高/m | 体质量/kg | BMI/(kg⋅m-2) | 患病部位(左/右)/n |
---|---|---|---|---|---|---|---|
低强度组 | 30 | 18/12 | 31.03±6.33 | 1.76±0.16 | 71.30±13.03 | 23.58±5.53 | 13/17 |
高强度组 | 30 | 17/13 | 31.43±6.54 | 1.75±0.08 | 71.88±12.34 | 23.49±3.19 | 14/16 |
χ2/t值 | 0.069 | -0.241 | 0.278 | -0.176 | 0.073 | 0.067 | |
P值 | 0.793 | 0.811 | 0.782 | 0.861 | 0.942 | 0.795 |
Table 2
Comparison of Lysholm scores between two groups pre- and post-group training"
组别 | n | 测试 | t值 | P值 | |
---|---|---|---|---|---|
低强度组 | 30 | 前测 | 64.73±9.25 | -13.739 | < 0.001 |
后测 | 89.33±4.08 | ||||
高强度组 | 30 | 前测 | 65.30±8.26 | -14.929 | < 0.001 |
后测 | 92.20±4.54 | ||||
分组训练前两组均值差 | 0.57±13.74 | -0.250 | 0.803 | ||
分组训练后两组均值差 | 2.87±6.05 | -2.574 | 0.013 |
Table 3
Comparison of muscle strength under 60°/s angular velocity between two groups pre- and post-group training"
变量 | 组别 | n | 测试 | t值 | P值 | |
---|---|---|---|---|---|---|
伸肌相对峰力矩/(N⋅m⋅kg-1) | 低强度组 | 30 | 前测 | 0.74±0.35 | -3.408 | 0.002 |
后测 | 0.90±0.29 | |||||
高强度组 | 30 | 前测 | 0.79±0.28 | -3.814 | 0.001 | |
后测 | 1.00±0.23 | |||||
分组训练前两组均值差 | 0.05±0.46 | -0.613 | 0.543 | |||
分组训练后两组均值差 | 0.10±0.41 | -1.532 | 0.131 | |||
屈肌相对峰力矩/(N⋅m⋅kg-1) | 低强度组 | 30 | 前测 | -0.56±0.22 | -2.194 | 0.036 |
后测 | -0.66±0.31 | |||||
高强度组 | 30 | 前测 | -0.50±0.16 | 4.379 | < 0.001 | |
后测 | -0.57±0.14 | |||||
分组训练前两组均值差 | 0.06±0.29 | -1.184 | 0.242 | |||
分组训练后两组均值差 | 0.09±0.38 | -1.443 | 0.157 | |||
伸肌耐力 | 低强度组 | 30 | 前测 | 0.89±0.28 | -2.293 | 0.029 |
后测 | 0.93±0.23 | |||||
高强度组 | 30 | 前测 | 0.94±0.22 | -3.075 | 0.005 | |
后测 | 0.98±0.24 | |||||
分组训练前两组均值差 | 0.05±0.33 | -0.776 | 0.441 | |||
分组训练后两组均值差 | 0.05±0.29 | -0.860 | 0.393 | |||
屈肌耐力 | 低强度组 | 30 | 前测 | 0.96±0.27 | -1.952 | 0.061 |
后测 | 0.99±0.27 | |||||
高强度组 | 30 | 前测 | 1.03±0.12 | -3.197 | 0.003 | |
后测 | 1.07±0.13 | |||||
分组训练前两组均值差 | 0.07±0.33 | -1.203 | 0.236 | |||
分组训练后两组均值差 | 0.08±0.33 | -1.402 | 0.168 |
Table 4
Comparison of muscle strength under 120°/s angular velocity between two groups pre- and post-group training"
变量 | 组别 | n | 测试 | t值 | P值 | |
---|---|---|---|---|---|---|
伸肌相对峰力矩/(N⋅m⋅kg-1) | 低强度组 | 30 | 前测 | 0.66±0.35 | -1.715 | 0.097 |
后测 | 0.78±0.31 | |||||
高强度组 | 30 | 前测 | 0.61±0.27 | -3.398 | 0.002 | |
后测 | 0.77±0.16 | |||||
分组训练前两组均值差 | -0.05±0.43 | 0.609 | 0.545 | |||
分组训练后两组均值差 | -0.01±0.37 | 0.130 | 0.897 | |||
屈肌相对峰力矩/(N⋅m⋅kg-1) | 低强度组 | 30 | 前测 | -0.50±0.22 | 3.030 | 0.005 |
后测 | -0.60±0.24 | |||||
高强度组 | 30 | 前测 | -0.49±0.22 | 4.100 | < 0.001 | |
后测 | -0.55±0.24 | |||||
分组训练前两组均值差 | 0.02±0.28 | -0.287 | 0.775 | |||
分组训练后两组均值差 | 0.05±0.31 | -0.722 | 0.473 | |||
伸肌耐力 | 低强度组 | 30 | 前测 | 0.99±0.14 | -0.530 | 0.600 |
后测 | 1.01±0.27 | |||||
高强度组 | 30 | 前测 | 1.03±0.27 | -3.420 | 0.002 | |
后测 | 1.07±0.23 | |||||
分组训练前两组均值差 | 0.04±0.27 | -0.736 | 0.465 | |||
分组训练后两组均值差 | 0.06±0.29 | -0.896 | 0.374 | |||
屈肌耐力 | 低强度组 | 30 | 前测 | 1.02±0.17 | -1.518 | 0.140 |
后测 | 1.06±0.25 | |||||
高强度组 | 30 | 前测 | 1.07±0.20 | -3.797 | 0.001 | |
后测 | 1.13±0.26 | |||||
分组训练前两组均值差 | 0.05±0.27 | -1.110 | 0.272 | |||
分组训练后两组均值差 | 0.06±0.38 | -0.968 | 0.337 |
Table 5
Comparison of muscle strength under 180°/s angular velocity between two groups pre- and post-group training"
变量 | 组别 | n | 测试 | t值 | P值 | |
---|---|---|---|---|---|---|
伸肌相对峰力矩/(Nm⋅kg-1) | 低强度组 | 30 | 前测 | 0.73±0.32 | -2.541 | 0.017 |
后测 | 0.81±0.30 | |||||
高强度组 | 30 | 前测 | 0.63±0.23 | -2.503 | 0.018 | |
后测 | 0.75±0.36 | |||||
分组训练前两组均值差 | -0.10±0.33 | 1.366 | 0.178 | |||
分组训练后两组均值差 | -0.07±0.49 | 0.762 | 0.449 | |||
屈肌相对峰力矩/(Nm⋅kg-1) | 低强度组 | 30 | 前测 | -0.44±0.22 | 2.177 | 0.038 |
后测 | -0.52±0.26 | |||||
高强度组 | 30 | 前测 | -0.43±0.23 | 5.863 | < 0.001 | |
后测 | -0.49±0.25 | |||||
分组训练前两组均值差 | 0.01±0.29 | -0.192 | 0.848 | |||
分组训练后两组均值差 | 0.03±0.32 | -0.531 | 0.597 | |||
伸肌耐力 | 低强度组 | 30 | 前测 | 0.86±0.24 | -0.714 | 0.481 |
后测 | 0.87±0.24 | |||||
高强度组 | 30 | 前测 | 0.89±0.18 | -2.320 | 0.028 | |
后测 | 0.91±0.21 | |||||
分组训练前两组均值差 | 0.03±0.30 | -0.585 | 0.561 | |||
分组训练后两组均值差 | 0.04±0.33 | -0.724 | 0.472 | |||
屈肌耐力 | 低强度组 | 30 | 前测 | 0.88±0.24 | -1.485 | 0.148 |
后测 | 0.91±0.20 | |||||
高强度组 | 30 | 前测 | 0.92±0.15 | -3.288 | 0.003 | |
后测 | 0.96±0.16 | |||||
分组训练前两组均值差 | 0.04±0.28 | -0.839 | 0.405 | |||
分组训练后两组均值差 | 0.05±0.23 | -1.146 | 0.257 |
[1] |
CHIA L, DE OLIVEIRA SILVA D, WHALAN M, et al. Non-contact anterior cruciate ligament injury epidemiology in team-ball sports: a systematic review with meta-analysis by sex, age, sport, participation level, and exposure type[J]. Sports Med, 2022, 52(10): 2447-2467.
doi: 10.1007/s40279-022-01697-w pmid: 35622227 |
[2] |
BODEN B P, SHEEHAN F T. Mechanism of non-contact ACL injury: OREF Clinical Research Award 2021[J]. J Orthop Res, 2021, 40(3): 531-540.
doi: 10.1002/jor.25257 pmid: 34951064 |
[3] |
WANG D, FAN H, HU L, et al. Increased knee torsional misalignment associated with femoral torsion is related to non-contact anterior cruciate ligament injury: a case-control study[J]. J Orthop Surg Res, 2024, 19(1): 124.
doi: 10.1186/s13018-024-04609-y pmid: 38321464 |
[4] | PERERA J, MILLER M D, DANAhy P. Case report demonstrating multifactorial risks of anterior cruciate ligament re-tear injuries and appropriate response among those with high chance of recurrence[J]. Cureus, 2022, 14(5): e24965. |
[5] | PORTER M, SHADBOLT B. Modified iliotibial band tenodesis versus lateral extracapsular tenodesis, to augment anterior cruciate ligament reconstruction: a 2-year randomized controlled trial[J]. ANZ J Surg, 2022, 92(9): 2247-2253. |
[6] | BARTH T, BOND C W, MACFADDEN L N, et al. Effect of time and sex on post-anterior cruciate ligament reconstruction psychological patient-reported outcome measure scores[J]. J Athl Train, 2023, 59(9): 898-905. |
[7] | WANG Y J, ZHANG J C, ZHANG Y Z, et al. Assessment of functional prognosis of anterior cruciate ligament reconstruction in athletes based on a body shape index[J]. World J Clin Cases, 2023, 11(19): 4567-4578. |
[8] | RUAN D, ZHU T, HUANG J, et al. Knitted silk-collagen scaffold incorporated with ligament stem/progenitor cells sheet for anterior cruciate ligament reconstruction and osteoarthritis prevention[J]. ACS Biomater Sci Eng, 2019, 5(10): 5412-5421. |
[9] |
LIM S, PARK K H, PARK D Y, et al. Rotational stability can be enhanced in revision anterior cruciate ligament reconstruction using the over-the-top augmentation technique compared to single bundle technique[J]. BMC Sports Sci Med Rehabil, 2023, 15(1): 111.
doi: 10.1186/s13102-023-00724-1 pmid: 37715268 |
[10] | KHALED W, GEROMETTA A, GUERINI H, et al. Complete and partial tears of the anterior cruciate ligament: acute and evolution[J]. Semin Musculoskelet Radiol, 2025, 29(3): 390-402. |
[11] | LARWA J, STOY C, CHAFETZ R S, et al. Stiff landings, core stability, and dynamic knee valgus: a systematic review on documented anterior cruciate ligament ruptures in male and female athletes[J]. Int J Environ Res Public Health, 2021, 18(7): 3826. |
[12] | PETERSON C, LI T, NORCROSS M. Return on investment of anterior cruciate ligament injury prevention programs in the United States[J]. [ahead of print]. J Athl Train, 2025. doi: 10.4085/1062-6050-0507.24. |
[13] | ROSS A G, AGRESTA B, MCKAY M, et al. Financial burden of anterior cruciate ligament reconstructions in football (soccer) players: an Australian cost of injury study[J]. Inj Prev, 2023, 29(6): 474-481. |
[14] |
XU A L, MUN F, GUPTA A, et al. Financial burden of pediatric anterior cruciate ligament reconstruction[J]. J Pediatr Orthop, 2022, 42(9): e943-e948.
doi: 10.1097/BPO.0000000000002230 pmid: 35941092 |
[15] | 施政良, 李彦林, 余洋, 等. 前交叉韧带重建术后重返运动评估方法研究进展[J]. 中国修复重建外科杂志, 2023, 37(4): 495-501. |
SHI Z L, LI Y L, YU Y, et al. Progress in evaluation of return to sports after anterior cruciate ligament reconstruction[J]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2023, 37(4): 495-501. | |
[16] |
ZHOU T, XU Y, ZHANG A, et al. Global research status of anterior cruciate ligament reconstruction: a bibliometric analysis[J]. EFORT Open Rev, 2022, 7(12): 808-816.
doi: 10.1530/EOR-21-0065 pmid: 36541554 |
[17] | FROBELL R B, ROOS H P, ROOS E M, et al. Treatment for acute anterior cruciate ligament tear: five year outcome of randomised trial[J]. BMJ, 2013, 346: f232. |
[18] | MANIAR N, VERHAGEN E, BRYANT A L, et al. Trends in Australian knee injury rates: an epidemiological analysis of 228,344 knee injuries over 20 years[J]. Lancet Reg Health West Pac, 2022, 21: 100409. |
[19] |
BEARD D J, DAVIES L, COOK J A, et al. Rehabilitation versus surgical reconstruction for non-acute anterior cruciate ligament injury (ACL SNNAP): a pragmatic randomised controlled trial[J]. Lancet, 2022, 400(10352): 605-615.
doi: 10.1016/S0140-6736(22)01424-6 pmid: 35988569 |
[20] | KOMNOS G A, HANTES M H, KALIFIS G, et al. Anterior cruciate ligament tear: individualized indications for non-operative management[J]. J Clin Med, 2024, 13(20): 6233. |
[21] | ARDERN C L, WEBSTER K E, TAYLOR N F, et al. Return to the preinjury level of competitive sport after anterior cruciate ligament reconstruction surgery two-thirds of patients have not returned by 12 months after surgery[J]. Am J Sports Med, 2010, 39(3): 538-543. |
[27] | TENGMAN E, SCHELIN L, HÄGER C K. Angle-specific torque profiles of concentric and eccentric thigh muscle strength 20 years after anterior cruciate ligament injury[J]. Sports Biomech, 2022, 23(12): 2691-2707. |
[28] | 杜培洁, 芦劼明. 神经肌肉功能训练应用于预防非接触性前交叉韧带损伤的研究进展[J]. 体育科技文献通报, 2024, 32(5): 237-240. |
[29] | COCHRANE J L, LLOYD D G, BESIER T F, et al. Training affects knee kinematics and kinetics in cutting maneuvers in sport[J]. Med Sci Sports Exerc, 2010, 42(8): 1535-1544. |
[30] | WILDERMAN D R, ROSS S E, PADUA D A. Thigh muscle activity, knee motion, and impact force during side-step pivoting in agility-trained female basketball players[J]. J Athl Train, 2009, 44(1): 14-25. |
[31] |
SMALL K, MC NAUGHTON L, MATTHEWS M. A systematic review into the efficacy of static stretching as part of a warm-up for the prevention of exercise-related injury[J]. Res Sports Med, 2008, 16(3): 213-231.
doi: 10.1080/15438620802310784 pmid: 18785063 |
[32] |
SHAW T, WILLIAMS M T, CHIPCHASE L S. Do early quadriceps exercises affect the outcome of ACL reconstruction? A randomised controlled trial[J]. Aust J Physiother, 2005, 51(1): 9-17.
pmid: 15748120 |
[33] |
CHRISTENSEN J, GOLDFINE L, WEST H. The effects of early aggressive rehabilitation on outcomes after anterior cruciate ligament reconstruction using autologous hamstring tendon: a randomized clinical trial[J]. J Sport Rehabil, 2013, 22(3): 191-201.
doi: 10.1123/jsr.22.3.191 pmid: 23579334 |
[34] |
ITO Y, DEIE M, ADACHI N, et al. A prospective study of 3-day versus 2-week immobilization period after anterior cruciate ligament reconstruction[J]. Knee, 2007, 14(1): 34-38.
pmid: 17129731 |
[35] | CHRZAN D, KUSZ D, BOŁTUĆ W, et al. Subjective assessment of rehabilitation protocol by patients after ACL reconstruction: preliminary report[J]. Ortop Traumatol Rehabil, 2013, 15(3): 215-225. |
[36] |
UÇAR M, KOCA I, EROGLU M, et al. Evaluation of open and closed kinetic chain exercises in rehabilitation following anterior cruciate ligament reconstruction[J]. J Phys Ther Sci, 2014, 26(12): 1875-1878.
doi: 10.1589/jpts.26.1875 pmid: 25540486 |
[22] |
GHADERI M, LETAFATKAR A, THOMAS A C, et al. Effects of a neuromuscular training program using external focus attention cues in male athletes with anterior cruciate ligament reconstruction: a randomized clinical trial[J]. BMC Sports Sci Med Rehabil, 2021, 13(1): 49.
doi: 10.1186/s13102-021-00275-3 pmid: 33964961 |
[23] |
NAGELLI C, WORDEMAN S, DI STASI S, et al. Biomechanical deficits at the hip in athletes with ACL reconstruction are ameliorated with neuromuscular training[J]. Am J Sports Med, 2018, 46(11): 2772-2779.
doi: 10.1177/0363546518787505 pmid: 30074811 |
[24] | NAGELLI C V, WORDEMAN S C, DI STASI S, et al. Neuromuscular training improves biomechanical deficits at the knee in anterior cruciate ligament-reconstructed athletes[J]. Clin J Sport Med, 2019, 31(2): 113-119. |
[25] | KOTSIFAKI R, KORAKAKIS V, KING E, et al. Aspetar clinical practice guideline on rehabilitation after anterior cruciate ligament reconstruction[J]. Br J Sports Med, 2023, 57(9): 500-514. |
[26] | KHALID K, ANWAR N, SAQULAIN G, et al. Neuromuscular training following anterior cruciate ligament reconstruction: pain, function, strength, power & quality of life perspective: a randomized control trial[J]. Pak J Med Sci, 2022, 38(8): 2175-2181. |
[37] | NAGELLI C V, DI STASI S, WORDEMAN S C, et al. Knee biomechanical deficits during a single-leg landing task are addressed with neuromuscular training in anterior cruciate ligament-reconstructed athletes[J]. Clin J Sport Med, 2019, 31(6): e347-e353. |
[38] |
ZULEGER T M, SLUTSKY-GANESH A B, KIM H, et al. Differential neural mechanisms for movement adaptations following neuromuscular training in young female athletes with a history of sports-related concussion[J]. Neuroscience, 2024, 558: 70-80.
doi: 10.1016/j.neuroscience.2024.08.014 pmid: 39154844 |
[39] | ROMMERS N, RÖSSLER R, TASSIGNON B, et al. Most amateur football teams do not implement essential components of neuromuscular training to prevent anterior cruciate ligament injuries and lateral ankle sprains[J]. Knee Surg Sports Traumatol Arthrosc, 2022, 30(4): 1169-1179. |
[40] | ZENG J, LIU Q, LEI Z, et al. Evaluation of integrated neuromuscular training on the recovery of joint injury: a protocol for systematic review and meta-analysis[J]. Medicine (Baltimore), 2022, 101(5): e28737. |
[41] | ZHAO W, WANG C, BI Y, et al. Effect of integrative neuromuscular training for injury prevention and sports performance of female badminton players[J]. Biomed Res Int, 2021, 2021: 5555853. |
[42] |
NESSLER T, DENNEY L, SAMPLEY J. ACL injury prevention: what does research tell us?[J]. Curr Rev Musculoskelet Med, 2017, 10(3): 281-288.
doi: 10.1007/s12178-017-9416-5 pmid: 28656531 |
[43] | 鲁智勇, 普江艳, 解强, 等. 改良运动损伤预防方案在前交叉韧带损伤预防中的应用[J]. 中国康复医学杂志, 2021, 36(4): 10. |
[44] | ZAKHARIA A, ZHANG K, AL-KATANANI F, et al. Prehabilitation prior to anterior cruciate ligament reconstruction is a safe and effective intervention for short- to long-term benefits: a systematic review[J]. [ahead of print]. Knee Surg Sports Traumatol Arthrosc, 2025. doi: 10.1002/ksa.12631. |
[45] |
CÓRDOBA L L, RODRIGUES M C, CORRÊA DE FREITAS R, et al. Physiotherapeutic approach to the preoperative period for the anterior cruciate ligament reconstruction: a systematic review[J]. J Bodyw Mov Ther, 2023, 33: 88-94.
doi: 10.1016/j.jbmt.2022.09.001 pmid: 36775532 |
[46] | SUGIMOTO D, MYER G, BUSH H, et al. Compliance with neuromuscular training and anterior cruciate ligament injury risk reduction in female athletes: a meta-analysis[J]. J Athl Train, 2012, 47(6): 714-723. |
[1] | WANG Xiaojing, WEI Jingyi, WEI Chen, WANG Ran, MA Sai, LIU Xihua. Effect of synchronous acupuncture and articulation training on spastic dysarthria after stroke [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(9): 1009-1016. |
[2] | LUO Dandan, SHEN Min, WANG Sujuan, QIU Wengxin, ZHANG Yuxuan, WU Yun, WANG Shengxiao. Characterisation of whole-brain resting-state functional connectivity in children with Chinese developmental dyslexia [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(9): 1023-1031. |
[3] | XUE Xing, ZHAO Haiyan, YUE Shuling, CHENG Jie, TANG Qiqun, CHENG Xiaohua, GUO Zonghai, LIU Pingping. Effect of remote ischemic conditioning combined with binaural beat music training in patients with cognitive dysfunction after cerebral infarction [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(9): 1057-1065. |
[4] | GAO Yunhan, HOU Shanshan, WANG Xinyu, ZHU Chongtian. Effect of brain-computer interface on upper limb motor dysfunction in stroke patients based on functional near-infrared spectroscopy [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(9): 1066-1073. |
[5] | LOU Yantao, WANG Jiawei, XIAO Xiaofei, LI Yanhui. Comparison of effect of cold therapy at different temperature on upper limb delayed onset muscle soreness in young men [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(9): 1074-1082. |
[6] | WANG Xiaofeng, HU Mengqiao, WANG Yan, WEI Kun, XU Wenzhu, REN Dan, MA Ye. Effect of exoskeleton robot-assisted gait training on lower limb function after stroke and spinal cord injury: a systematic review [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(8): 914-921. |
[7] | LIANG Fei, CHEN Ximei, QI Jing, WANG Shurong, LIANG Yongsheng. Functioning, vocational competency and career development of college students with disabilities based on ICF and RCF [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(8): 922-929. |
[8] | LI Sha, QIU Zhuoying. Characteristics of speech and language functioning in children with intellectual and developmental disabilities and their educational curricula and rehabilitation interventions: an ICF-based study [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(8): 930-938. |
[9] | REN Liangxiang, MEI Peipei, MAO Erli, TANG Yifan, WANG Xue, YE Yiqing. Needs of full participation in intestinal management for primary caregivers of patients with neurogenic bowel dysfunction after spinal cord injury: a qualitative study [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(8): 965-971. |
[10] | YANG Yaru, QIU Zhuoying, CHEN Di, WANG Zhongyan, ZHANG Meng, SONG Guiyun. Constructing disability eligibility standards using ICF: conceptual framework, approaches and methodological systems [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(7): 745-754. |
[11] | LÜ Xueli, YANG Yaru, QIU Zhuoying, WANG Zhongyan, TIAN Yifan, LIU Ye, LI Chen, CHEN Di. Comparative study of six visual disability-related standards in China based on ICF and ICD-11 [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(7): 755-762. |
[12] | QIN Qing, YANG Yaru, QIU Zhuoying, CHEN Di, LIU Ye, TIAN Yifan, WANG Zhongyan. Comparative study of six hearing disability-related standards in China based on ICF and ICD-11 [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(7): 763-771. |
[13] | YE Haiyan, YANG Yaru, QIU Zhuoying, WANG Zhongyan, CHEN Di, SONG Guiyun, WANG Fangyong, TIAN Yifan, LIU Ye. Comparative study of five physical disability-related standards in China based on ICF and ICD-11 [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(7): 772-780. |
[14] | LI Sha. Adaptive development evaluation indicator system for students with special needs based on ICF [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(6): 628-634. |
[15] | ZHU Chenchen, LIAO Sisi, PAN Jianming, XIA Bihua, HONG Ningjie. Early home-based education and rehabilitation for infants and toddlers with developmental disabilities: construction of goal and service system using ICF [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(6): 635-641. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|