Chinese Journal of Rehabilitation Theory and Practice ›› 2025, Vol. 31 ›› Issue (11): 1322-1332.doi: 10.3969/j.issn.1006-9771.2025.11.009
Previous Articles Next Articles
WU Mengyi1, WANG Chong1, WANG Pengfei1, XING Zeyu1, HUO Hongfeng1,2(
)
Received:2025-06-11
Revised:2025-09-10
Published:2025-11-25
Online:2025-11-26
Contact:
HUO Hongfeng
E-mail:hhf413@163.com
Supported by:CLC Number:
WU Mengyi, WANG Chong, WANG Pengfei, XING Zeyu, HUO Hongfeng. Effect of dual tasks with different cognitive loads on prefrontal lobe activation and static posture control in young men[J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(11): 1322-1332.
Table 4
Descriptive statistical results of the proportion of muscle energy in different frequency bands under different cognitive load tasks (n = 27)"
| 频段 | 肌肉 | 无认知单任务 | 简单认知双任务 | 困难认知双任务 |
|---|---|---|---|---|
| β | 腓肠肌内侧 | 0.08±0.03 | 0.10±0.04 | 0.09±0.29 |
| β | 腓肠肌外侧 | 0.06±0.02 | 0.08±0.03 | 0.07±0.02 |
| β | 胫骨前肌 | 0.08±0.03 | 0.10±0.28 | 0.09±0.04 |
| piper | 腓肠肌内侧 | 0.12±0.30 | 0.12±0.25 | 0.11±0.24 |
| piper | 腓肠肌外侧 | 0.11±0.03 | 0.09±0.02 | 0.09±0.03 |
| piper | 胫骨前肌 | 0.12±0.02 | 0.10±0.03 | 0.11±0.02 |
Table 5
Results of repeated measures analysis of variance for the proportion of muscle energy in different frequency bands under different cognitive loads"
| 频段 | 肌肉 | 平方和 | 自由度 | 均方 | F值 | P值 |
|---|---|---|---|---|---|---|
| β | 腓肠肌内侧 | 0.007 | 1.505 | 0.005 | 3.879 | 0.040 |
| β | 腓肠肌外侧 | 0.005 | 1.539 | 0.003 | 4.431 | 0.026 |
| β | 胫骨前肌 | 0.002 | 1.462 | 0.001 | 2.308 | 0.126 |
| piper | 腓肠肌内侧 | 0.000 | 1.385 | 0.000 | 0.635 | 0.480 |
| piper | 腓肠肌外侧 | 0.006 | 1.198 | 0.005 | 5.257 | 0.023 |
| piper | 胫骨前肌 | 0.006 | 2.000 | 0.003 | 5.579 | 0.006 |
Table 6
Post hoc pairwise comparison test results of the proportion of muscle energy in different frequency bands under different cognitive loads"
| 频段/肌肉 | 认知负荷 | 认知负荷 | 平均值差 | P值 | 95%CI | |
|---|---|---|---|---|---|---|
| 下限 | 上限 | |||||
| β/腓肠肌内侧 | 无认知单任务 | 简单认知双任务 | -0.230 | 0.046 | -0.047 | < 0.001 |
| 简单认知双任务 | 困难认知双任务 | 0.013 | 0.664 | -0.013 | 0.038 | |
| 无认知单任务 | 困难认知双任务 | -0.011 | 0.189 | -0.025 | 0.003 | |
| β/腓肠肌外侧 | 无认知单任务 | 简单认知双任务 | -0.019 | 0.037 | -0.037 | -0.001 |
| 简单认知双任务 | 困难认知双任务 | 0.011 | 0.451 | -0.008 | 0.029 | |
| 无认知单任务 | 困难认知双任务 | -0.008 | 0.220 | -0.019 | 0.003 | |
| β/胫骨前肌 | 无认知单任务 | 简单认知双任务 | -0.013 | 0.201 | -0.029 | 0.004 |
| 简单认知双任务 | 困难认知双任务 | 0.005 | 1.000 | -0.013 | 0.022 | |
| 无认知单任务 | 困难认知双任务 | -0.008 | 0.148 | -0.017 | 0.002 | |
| piper/腓肠肌内侧 | 无认知单任务 | 简单认知双任务 | -0.004 | 1.000 | -0.019 | 0.010 |
| 简单认知双任务 | 困难认知双任务 | 0.005 | 0.306 | -0.002 | 0.012 | |
| 无认知单任务 | 困难认知双任务 | < 0.001 | 1.000 | -0.013 | 0.013 | |
| piper/腓肠肌外侧 | 无认知单任务 | 简单认知双任务 | 0.019 | 0.047 | 0.000 | 0.037 |
| 简单认知双任务 | 困难认知双任务 | -0.001 | 1.000 | -0.009 | 0.006 | |
| 无认知单任务 | 困难认知双任务 | 0.017 | 0.119 | -0.003 | 0.037 | |
| piper/胫骨前肌 | 无认知单任务 | 简单认知双任务 | 0.020 | 0.016 | 0.003 | 0.038 |
| 简单认知双任务 | 困难认知双任务 | -0.012 | 0.171 | -0.028 | 0.003 | |
| 无认知单任务 | 困难认知双任务 | 0.008 | 0.456 | -0.006 | 0.022 | |
Table 7
Descriptive statistical results of HbO2 concentration in ROI under dual tasks with different cognitive loads (n = 27) 单位:μmol/L"
| ROI | 无认知单任务 | 简单认知双任务 | 困难认知双任务 |
|---|---|---|---|
| 右DLPFC | -9.84±25.76 | -8.21±43.61 | 13.11±38.53 |
| 右VLPFC | -10.10±28.50 | 3.87±33.28 | 12.87±35.80 |
| 右FPC | -8.97±34.70 | -9.68±40.29 | 5.69±38.55 |
| 右OFC | -3.74±27.00 | -5.65±42.51 | 2.13±44.02 |
| 左DLPFC | -6.21±29.66 | -5.37±34.39 | 6.43±34.17 |
| 左VLPFC | -11.98±39.07 | 5.87±39.04 | 14.43±36.70 |
| 左FPC | -2.47±36.79 | -7.23±39.60 | 1.17±36.77 |
| 左OFC | -3.58±29.50 | -6.40±39.06 | -16.58±44.00 |
Table 8
Results of repeated measures analysis of variance of HbO2 concentration for ROI under dual tasks with different cognitive loads"
| ROI | 平方和 | 自由度 | 均方 | F值 | P值 |
|---|---|---|---|---|---|
| 右DLPFC | 8857.968 | 2 | 4428.984 | 3.202 | 0.049 |
| 右VLPFC | 7231.215 | 2 | 3615.607 | 3.671 | 0.032 |
| 右FPC | 4064.680 | 2 | 2032.340 | 2.079 | 0.135 |
| 右OFC | 886.736 | 2 | 443.368 | 0.433 | 0.651 |
| 左DLPFC | 2699.590 | 2 | 1349.795 | 1.547 | 0.223 |
| 左VLPFC | 9799.618 | 2 | 4899.809 | 3.263 | 0.046 |
| 左FPC | 957.806 | 2 | 478.903 | 0.522 | 0.596 |
| 左OFC | 2522.958 | 2 | 1261.479 | 1.196 | 0.311 |
Table 9
Post hoc pairwise comparison of HbO2 concentrations on ROI during dual tasks with different cognitive loads"
| ROI | 认知负荷 | 认知负荷 | 平均值差 | P值 | 95%CI | |
|---|---|---|---|---|---|---|
| 下限 | 上限 | |||||
| 右DLPFC | 无认知单任务 | 简单认知双任务 | -1.634 | 1.000 | -26.239 | 22.970 |
| 简单认知双任务 | 困难认知双任务 | -21.321 | 0.263 | -52.060 | 9.418 | |
| 无认知单任务 | 困难认知双任务 | -22.956 | 0.034 | -44.460 | -1.451 | |
| 右VLPFC | 无认知单任务 | 简单认知双任务 | -13.968 | 0.301 | -34.945 | 7.009 |
| 简单认知双任务 | 困难认知双任务 | -8.997 | 0.948 | -31.524 | 13.529 | |
| 无认知单任务 | 困难认知双任务 | -22.965 | 0.039 | -45.007 | -0.924 | |
| 右FPC | 无认知单任务 | 简单认知双任务 | 0.719 | 1.000 | -23.630 | 25.068 |
| 简单认知双任务 | 困难认知双任务 | -15.374 | 0.102 | -32.951 | 2.204 | |
| 无认知单任务 | 困难认知双任务 | -14.655 | 0.337 | -37.473 | 8.163 | |
| 右OFC | 无认知单任务 | 简单认知双任务 | 1.913 | 1.000 | -22.729 | 26.555 |
| 简单认知双任务 | 困难认知双任务 | -7.777 | 0.732 | -24.472 | 8.917 | |
| 无认知单任务 | 困难认知双任务 | -5.864 | 1.000 | -30.474 | 18.746 | |
| 左DLPFC | 无认知单任务 | 简单认知双任务 | -0.839 | 1.000 | -23.967 | 22.290 |
| 简单认知双任务 | 困难认知双任务 | -11.806 | 0.412 | -31.514 | 7.903 | |
| 无认知单任务 | 困难认知双任务 | -12.644 | 0.282 | -31.260 | 5.972 | |
| 左VLPFC | 无认知单任务 | 简单认知双任务 | -17.844 | 0.434 | -48.211 | 12.523 |
| 简单认知双任务 | 困难认知双任务 | -8.560 | 1.000 | -36.002 | 18.883 | |
| 无认知单任务 | 困难认知双任务 | 26.404 | 0.018 | -48.990 | -3.818 | |
| 左FPC | 无认知单任务 | 简单认知双任务 | 4.764 | 1.000 | -18.744 | 28.272 |
| 简单认知双任务 | 困难认知双任务 | -8.398 | 0.817 | -27.554 | 10.759 | |
| 无认知单任务 | 困难认知双任务 | -3.634 | 1.000 | -24.012 | 16.745 | |
| 左OFC | 无认知单任务 | 简单认知双任务 | 2.814 | 1.000 | -20.594 | 26.222 |
| 简单认知双任务 | 困难认知双任务 | 10.179 | 0.509 | -8.266 | 28.623 | |
| 无认知单任务 | 困难认知双任务 | 12.993 | 0.608 | -12.441 | 38.426 | |
| [1] |
MONOLI C, MORRIS A J, CROFTS R, et al. Acute and longitudinal effects of concussion on reactive balance in collegiate athletes[J]. Neurorehabil Neural Repair, 2025, 39(4): 263-273.
doi: 10.1177/15459683241309569 |
| [2] |
KRISTEVA R, PATINO L, OMLOR W. Beta-range cortical motor spectral power and corticomuscular coherence as a mechanism for effective corticospinal interaction during steady-state motor output[J]. Neuroimage, 2007, 36(3): 785-792.
doi: 10.1016/j.neuroimage.2007.03.025 pmid: 17493837 |
| [3] |
SUGIHARA Y, MATSUURA T, KUBO Y, et al. Activation of the prefrontal cortex and improvement of cognitive performance with standing on one leg[J]. Neuroscience, 2021, 477: 50-62.
doi: 10.1016/j.neuroscience.2021.10.004 pmid: 34634425 |
| [4] |
WEISSINGER K, BACH M M, BRACHMAN A, et al. Perceived cognitive fatigue has only marginal effects on static balance control in healthy young adults[J]. Exp Brain Res, 2024, 242(1): 163-177.
doi: 10.1007/s00221-023-06736-0 pmid: 37987808 |
| [5] |
PELLECCHIA G L. Postural sway increases with attentional demands of concurrent cognitive task[J]. Gait Posture, 2003, 18(1): 29-34.
pmid: 12855298 |
| [6] |
GHAI S, GHAI I, EFFENBERG A O. Effects of dual tasks and dual-task training on postural stability: a systematic review and meta-analysis[J]. Clin Interv Aging, 2017, 12: 557-577.
doi: 10.2147/CIA.S125201 pmid: 28356727 |
| [7] | POTVIN-DESROCHERS A, RICHER N, LAJOIE Y. Cognitive tasks promote automatization of postural control in young and older adults[J]. Gait Posture, 2017, 57: 40-45. |
| [8] | 张雪, 蔡燕, 王聪, 等. 认知-运动双任务训练在预防老年人跌倒中的研究进展[J]. 中华护理杂志, 2025, 60(3): 297-302. |
| ZHANG X, CAI Y, WANG C, et al. Research progress on cognitive-motor dual-task training for preventing falls in older adults[J]. Chin J Nurs, 2025, 60(3): 297-302. | |
| [9] | 刘鑫玥, 刘卉, 刘鹏波, 等. 不同类型和负荷双任务对社区脑卒中患者行走稳定性的影响[J]. 医用生物力学, 2024, 39(S1): 135. |
| [10] | 张晨晨, 陈秀恩, 郑洁皎, 等. 基于功能性近红外光谱技术的不同吞咽任务态前额叶皮质功能研究[J]. 中国康复医学杂志, 2023, 38(10): 1372-1378. |
| ZHANG C C, CHEN X E, ZHENG J J, et al. The study of prefrontal cortex function in different swallowing task based on functional near-infrared spectroscopy[J]. Chin J Rehabil Med, 2023, 38(10): 1372-1378. | |
| [11] |
IZZETOGLU M, HOLTZER R. Effects of processing methods on fnirs signals assessed during active walking tasks in older adults[J]. IEEE Trans Neural Syst Rehabil Eng, 2020, 28(3): 699-709.
doi: 10.1109/TNSRE.7333 |
| [12] | 王惠, 卢茜, 陈陆蕊, 等. 功能性近红外光谱技术在成年人单-双任务范式平衡测试前额皮层脑功能活动测量中的应用[J]. 中国康复医学杂志, 2024, 39(10): 1443-1448. |
| WANG H, LU Q, CHEN L R, et al. The application of functional near-infrared spectroscopy in measuring the activity of prefrontal cortex in healthy individuals during balance task under single or dual task paradigm[J]. Chin J Rehabil Med, 2024, 39(10): 1443-1448. | |
| [13] |
FRASER S A, DUPUY O, POULIOT P, et al. Comparable cerebral oxygenation patterns in younger and older adults during dual-task walking with increasing load[J]. Front Aging Neurosci, 2016, 8: 240.
pmid: 27812334 |
| [14] |
KVIST A, BEZUIDENHOUT L, JOHANSSON H, et al. Validation of fNIRS measurement of executive demand during walking with and without dual-task in younger and older adults and people with Parkinson's disease[J]. Neuroimage Clin, 2024, 43: 103637.
doi: 10.1016/j.nicl.2024.103637 |
| [15] | SARAIVA M, CASTRO M A, VILAS-BOAS J P. Muscular and prefrontal cortex activity during dual-task performing in young adults[J]. Eur J Investig Health Psychol Educ, 2023, 13(4): 736-747. |
| [16] |
TEO W P, RANTALAINEN T, NUZUM N, et al. Altered prefrontal cortex responses in older adults with subjective memory complaints and dementia during dual-task gait: an fNIRS study[J]. Eur J Neurosci, 2021, 53(4): 1324-1333.
doi: 10.1111/ejn.v53.4 |
| [17] |
PAPEGAAIJ S, HORTOBÁGYI T, GODDE B, et al. Neural correlates of motor-cognitive dual-tasking in young and old adults[J]. PLoS One, 2017, 12(12): e0189025.
doi: 10.1371/journal.pone.0189025 |
| [18] | 刘鑫玥, 霍洪峰. 双重任务介入对人体静态平衡和动态稳定性的影响[J]. 中国康复医学杂志, 2024, 39(4): 581-584. |
| [19] | 白啸天, 霍洪峰. 基于线性和非线性分析的人体站立稳定调控策略[J]. 医用生物力学, 2023, 38(5): 1003-1009. |
| BAI X T, HUO H F. Stabilization regulation strategy during standing based on linear and nonlinear analysis[J]. J Med Biomech, 2023, 38(5): 1003-1009. | |
| [20] |
BROWN P. Cortical drives to human muscle: the Piper and related rhythms[J]. Prog Neurobiol, 2000, 60(1): 97-108.
pmid: 10622378 |
| [21] | 倪新迪, 杨蕾, 刘晔. 动态疲劳中的神经肌肉控制策略:基于同步压缩小波变换和排列熵的肌电分析[C]. 天津: 第十三届全国体育科学大会论文摘要集——专题报告(运动生理与生物化学分会), 2023: 3. |
| [22] |
HALLIDAY D M, CONWAY B A, FARMER S F, et al. Using electroencephalography to study functional coupling between cortical activity and electromyograms during voluntary contractions in humans[J]. Neurosci Lett, 1998, 241(1): 5-8.
doi: 10.1016/s0304-3940(97)00964-6 pmid: 9502202 |
| [23] |
FISHER K M, ZAIMI B, WILLIAMS T L, et al. Beta-band intermuscular coherence: a novel biomarker of upper motor neuron dysfunction in motor neuron disease[J]. Brain, 2012, 135(Pt 9): 2849-2864.
doi: 10.1093/brain/aws150 pmid: 22734124 |
| [24] | YANG J, YAN S, CAO C. Different dual-task paradigm reduce postural control ability and dynamic stability of healthy young adults during stair descent[J]. Appl Bionics Biomech, 2024, 2024: 9942042. |
| [25] |
MONGOLD S J, PIITULAINEN H, LEGRAND T, et al. Temporally stable beta sensorimotor oscillations and corticomuscular coupling underlie force steadiness[J]. Neuroimage, 2022, 261: 119491.
doi: 10.1016/j.neuroimage.2022.119491 |
| [26] |
FUJITA N, KUNIMUNE S, OKADA S. Contribution of the dorsolateral prefrontal cortex activation, ankle muscle activities, and coactivation during dual-tasks to postural steadiness: a pilot study[J]. J Phys Ther Sci, 2020, 32(7): 467-472.
doi: 10.1589/jpts.32.467 pmid: 32753789 |
| [27] |
BROWN P, SALENIUS S, ROTHWELL J C, et al. Cortical correlate of the Piper rhythm in humans[J]. J Neurophysiol, 1998, 80(6): 2911-2917.
doi: 10.1152/jn.1998.80.6.2911 pmid: 9862895 |
| [28] | 郑慧芬, 孙威, 宋祺鹏, 等. 手机任务介入对下楼梯行走动态稳定性的影响[J]. 中国运动医学杂志, 2021, 40(7): 528-535. |
| ZHENG H F, SUN W, SONG Q P, et al. Effects of mobile phone task on dynamic stability during stair descent[J]. Chin J Sports Med, 2021, 40(7): 528-535. | |
| [29] | SHUMWAY-COOK A, WOOLLACOTT M, KERNS K A, et al. The effects of two types of cognitive tasks on postural stability in older adults with and without a history of falls[J]. J Gerontol A Biol Sci Med Sci, 1997, 52(4): M232-M240. |
| [30] |
TING L H, MCKAY J L. Neuromechanics of muscle synergies for posture and movement[J]. Curr Opin Neurobiol, 2007, 17(6): 622-628.
doi: 10.1016/j.conb.2008.01.002 pmid: 18304801 |
| [31] |
TAKAKUSAKI K. Functional neuroanatomy for posture and gait control[J]. J Mov Disord, 2017, 10(1): 1-17.
doi: 10.14802/jmd.16062 pmid: 28122432 |
| [32] |
HOLTZER R, MAHONEY J R, IZZETOGLU M, et al. Online fronto-cortical control of simple and attention-demanding locomotion in humans[J]. Neuroimage, 2015, 112: 152-159.
doi: S1053-8119(15)00174-3 pmid: 25765257 |
| [33] |
XU G, ZHOU M, CHEN Y, et al. Brain activation during standing balance control in dual-task paradigm and its correlation among older adults with mild cognitive impairment: a fNIRS study[J]. BMC Geriatr, 2024, 24(1): 144.
doi: 10.1186/s12877-024-04772-1 pmid: 38341561 |
| [34] | FUJITA H, KASUBUCHI K, WAKATA S, et al. Role of the frontal cortex in standing postural sway tasks while dual-tasking: a functional near-infrared spectroscopy study examining working memory capacity[J]. Biomed Res Int, 2016, 2016: 7053867. |
| [35] | TEO W P, GOODWILL A M, HENDY A M, et al. Sensory manipulation results in increased dorsolateral prefrontal cortex activation during static postural balance in sedentary older adults: an fNIRS study[J]. Brain Behav, 2018, 8(10): e1109. |
| [36] |
BARBÉ A K, KOENIGS M, GRAFMAN J. Dorsolateral prefrontal contributions to human working memory[J]. Cortex, 2013, 49(5): 1195-1205.
doi: 10.1016/j.cortex.2012.05.022 pmid: 22789779 |
| [37] | STOJAN R, MACK M, BOCK O, et al. Inefficient frontal and parietal brain activation during dual-task walking in a virtual environment in older adults[J]. Neuroimage, 2023, 2023: 273120070. |
| [38] | 王静, 陈亮, 马驰程, 等. 双重任务对身体姿势调节的影响[J]. 中国体育科技, 2024, 60(5): 58-67. |
| WANG J, CHEN L, MA C C, et al. Effects of dual-task on postural adjustments[J]. Chin Sport Sci Technol, 2024, 60(5): 58-67. | |
| [39] |
SZAMEITAT A J, VANLOO A, MÜLLER H J. Central as well as peripheral attentional bottlenecks in dual-task performance activate lateral prefrontal cortices[J]. Front Hum Neurosci, 2016, 10: 119.
doi: 10.3389/fnhum.2016.00119 pmid: 27014044 |
| [40] |
SAYLIK R, WILLIAMS A L, MURPHY R A, et al. Characterising the unity and diversity of executive functions in a within-subject fMRI study[J]. Sci Rep, 2022, 12(1): 8182.
doi: 10.1038/s41598-022-11433-z pmid: 35581269 |
| [41] |
MCKENDRICK R, AYAZ H, OLSTMESTEAD R, et al. Enhancing dual-task performance with verbal and spatial working memory training: continuous monitoring of cerebral hemodynamics with NIRS[J]. Neuroimage, 2014, 85(Pt 3): 1014-1026.
doi: 10.1016/j.neuroimage.2013.05.103 |
| [42] |
AINSWEORTH M, WU Z, BROWNCROSS H, et al. Frontopolar cortex shapes brain network structure across prefrontal and posterior cingulate cortex[J]. Prog Neurobiol, 2022, 217: 102314.
doi: 10.1016/j.pneurobio.2022.102314 |
| [43] |
MARCIANO D, STAVELAND B R, LIN J J, et al. Electrophysiological signatures of inequity-dependent reward encoding in the human OFC[J]. Cell Rep, 2023, 42(8): 112865.
doi: 10.1016/j.celrep.2023.112865 |
| [1] | LUO Dandan, SHEN Min, WANG Sujuan, QIU Wengxin, ZHANG Yuxuan, WU Yun, WANG Shengxiao. Characterisation of whole-brain resting-state functional connectivity in children with Chinese developmental dyslexia [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(9): 1023-1031. |
| [2] | GAO Yunhan, HOU Shanshan, WANG Xinyu, ZHU Chongtian. Effect of brain-computer interface on upper limb motor dysfunction in stroke patients based on functional near-infrared spectroscopy [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(9): 1066-1073. |
| [3] | XU Qi, ZHENG Dingzhao, NIU Zhenyuan, YANG Yaling, WEN Weiyou, XU Jingsheng, WU Longqiang, WU Fan, YAN Tiebin. Effect of transcranial direct current stimulation combined with seated Taijiquan Yunshou in different sequences on cerebral cortical activation in stroke patients with hemiplegia: a functional near-infrared spectroscopy study [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(10): 1121-1127. |
| [4] | WANG Junwei, XU Qi, WANG Xinxin, HE Yiqi, WU Xinhong, ZHANG Yun. Effect of transcranial direct current stimulation combined with seated Taijiquan Yunshou in different sequences on cerebral cortical activation for healthy youths: a functional near-infrared spectroscopy study [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(10): 1128-1133. |
| [5] | WANG Yingya, LI Taibiao, SU Ahong, LIN Youyi, ZHOU Xianhong, TIAN Lu, XIE Hongwu. Effect of single or combined transcranial direct current stimulation and functional electrical stimulation on grip strength and brain activation in young healthy individuals: a functional near-infrared spectroscopy-based study [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(10): 1134-1142. |
| [6] | XU Sheng, ZHANG Min, YANG Qingqing, WANG Qinglei, GENG Ayan, WANG Tong, GUO Chuan. Effect of functional electrical stimulation hand cycling on functional connection of brain networks in stroke patients: a study based on functional near-infrared spectroscopy [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(10): 1181-1187. |
| [7] | ZHAO Jianbin, YAO Yingce, WU Jing, XUE Boshi, YANG Xiaowei, ZHOU Zhipeng, ZHENG Liangliang. Effect of muscle energy technique on dynamic postural control and lumbar neuromuscular function in patients with non-specific low back pain: a randomized controlled trial [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(9): 1092-1098. |
| [8] | DONG Ping, KAN Chaojie, GUO Chuan, ZHUANG Ren, WANG Qinglei, QIAN Xue. Characteristics of cortical activation in balance control under different sensory strategies in the elderly [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(7): 848-853. |
| [9] | LIU Jiaqi, HOU Shanshan, WANG Xinyu, ZHU Chongtian, WANG Xiaowen. Characteristics of cerebral cortex activation in different swallowing periods based on near-infrared spectroscopy [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(6): 709-718. |
| [10] | CHEN Yuanyue, LI Jiabin, KUAI Feng, PENG Lili, XIANG Jie. Immediate effect of multi-chancel functional electrical stimulation combined with task-oriented training on brain functional network in stroke patients with upper limb hemiplegia [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(4): 462-467. |
| [11] | LUO Qihang, WU Yuxi, ZHANG Jiaxuan, LI Wanying, OU Haining, LIN Qiang, LIANG Junjie. Brain network during balance in older adults: a functional near-infrared spectroscopy study [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(2): 238-242. |
| [12] | WANG Haifang, XU Minjie, LI Ying, LEI Xiaojing, CHANG Jingling. Application of functional near-infrared spectroscopy in stroke: a visualized analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(12): 1405-1419. |
| [13] | SONG Jianfei, DAI Lei, QIN Zhengyuan, ZHANG Yan, GU Xinlu, CHEN Yanhong, LI Dongyue, FENG Xiaojuan. Effect of upper limb robot-assisted therapy on upper limb function in stroke patients: based on functional near-infrared spectroscopy [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(11): 1339-1345. |
| [14] | WANG Xiaojun, WANG Lichun, SHI Meichao, LIU Jun, YING Xiaoce, BAI Dehao. Effect of therapeutic postural placement on postural control and balance in stroke patients with hemiplegia [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(11): 1353-1358. |
| [15] | ZHANG Hengrui, MENG Zhaoli, CUI Pei, WANG Ruiyi. Impact of different kinds of helmet-mounted display on human balance and posture control [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(11): 1359-1364. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
||