《Chinese Journal of Rehabilitation Theory and Practice》 ›› 2022, Vol. 28 ›› Issue (2): 190-198.doi: 10.3969/j.issn.1006-9771.2022.02.009
Previous Articles Next Articles
					
													YU Kuai1,ZHANG Li2,YE Xiangming2(
)
												  
						
						
						
					
				
Received:2021-10-09
															
							
																	Revised:2022-01-18
															
							
															
							
																	Published:2022-02-25
															
							
																	Online:2022-03-09
															
						Contact:
								YE Xiangming   
																	E-mail:yexmdr@126.com
																					Supported by:CLC Number:
YU Kuai,ZHANG Li,YE Xiangming. Prediction models of outcome for patients with prolonged disorders of consciousness: a systematic review[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(2): 190-198.
"
| 纳入文献 | 研究对象 | 监测项目 | 主要结局指标 | 结论 | 
|---|---|---|---|---|
| 唐秋月等[ |  脑卒中、GCS < 8 | GCS、FOUR、mRS | mRS 5~6分,预后不良;mRS 0~4分,预后良好 | FOUR对预后的评估能力优于GCS | 
| Estraneo等[ |  pDoC | CRS-R | 意识恢复情况 | CRS-R是意识恢复的显著独立预测因素 | 
| Bodien等[ |  意识障碍 | CRS-R | 觉醒程度 | CRS-R可识别MCS与EMCS | 
| Sattin等[ |  成年人,意识障碍 | CRS-R | 觉醒程度 | CRS-R修正评分可提示患者预后 | 
| Pincherle等[ |  16岁以上,pDoC | CRS-R、MBT-r | GOS | MBT-r可作为CRS-R的补充使预后预测更精准 | 
| Aubinet等[ |  18岁以上,pDoC | CRS-R、SECONDs | 意识状态 | SECONDs简便有效 | 
| Thibaut等[ |  意识障碍 | fMRI | 意识状态 | 皮质网络代谢与CRS-R正相关 | 
| Sitt等[ |  意识障碍 | fMRI | 意识状态 | DMN连接强度与意识水平显著相关 | 
| Silva等[ |  GCS < 8 | fMRI | CRS-R | 脑功能连接与患者未来的神经恢复之间存在显著关联性 | 
| Di Perri等[ |  意识障碍 | fMRI | 意识状态 | 默认网络和执行控制网络之间的负功能连接可预测预后 | 
| Stender等[ |  意识障碍 | fMRI | CRS-R | 皮质代谢率和意识水平恢复之间存在显著相关性 | 
| Yu等[ |  意识障碍 | fMRI | GOS-E | FC是最准确的单因子预测模型,因子预测模型优于单因子 | 
| Song等[ |  意识障碍 | fMRI | CRS-R、GOS | 多领域预后模型准确高 | 
| Wang等[ |  VS/UWS | fMRI | CRS-R | 听觉皮质的激活类型和激活量与预后显著相关 | 
| Okumura等[ |  意识障碍 | fMRI | 意识状态 | 颞上回激活可能预示意识状态改善 | 
| Monti等[ |  意识障碍 | EEG | 意识状态 | 视觉认知与预后有所关联 | 
| Babiloni等[ |  意识障碍 | EEG | 认知功能水平量表 | α振荡可能为意识恢复的预测因素 | 
| Hofmeijer等[ |  意识障碍 | EEG | EEG特征 | 弥散性慢波提示预后良好;等电位、低电压或爆发波的爆发性抑制提示预后不良 | 
| Schnakers等[ |  缺氧缺血性脑病后意识障碍 | EEG | 意识状态 | 脑电双频指数与GCS和CRS-R评分显著正相关 | 
| Holeckova等[ |  意识障碍 | EEG | 意识状态 | 唤名刺激能预测结局 | 
| Pan等[ |  意识障碍 | EEG | 脑机接口设备是否检出命令跟随 | 视觉刺激可以检测意识障碍患者残存的意识 | 
| Venturella等[ |  意识障碍 | EEG | 意识状态 | 痛觉是意识障碍患者预后分析良好的预测因子 | 
| Chéliout-Heraut等[ |  意识障碍 | EEG | 意识状态 | 睡眠纺锤波是有利预后预测因子 | 
| Wislowska等[ |  儿童,GCS < 5 | EEG | CRS-R | 睡眠纺锤波密度与CRS-R评分呈线性正相关 | 
| Zheng等[ |  意识障碍 | EEG | 意识状态 | 早期体感诱发电位缺失的患者均预后不良 | 
| Cavinato等[ |  弥漫性轴索损伤、意识障碍 | EEG | 意识是否恢复 | P300是VS患者意识恢复的一个强有力的预测因子 | 
| Luaute等[ |  VS | EEG | GOS | 中潜伏期听觉诱发电位皮质成分缺失与意识恶化有关 | 
| 翁绮贞等[ |  GCS < 8 | 脑干听觉诱发电位、EEG | 是否觉醒 | 脑干听觉诱发电位联合EEG评估预后准确性高 | 
| 方红[ |  GCS < 8 | 脑干听觉诱发电位、体感诱发电位 | 死亡、VS:预后不良;恢复良好、轻或重的残疾:预后良好 | 脑干听觉诱发电位、体感诱发电位有助于预后预测 | 
| Kotchoubey等[ |  VS、MCS | EEG | 意识状态 | 失匹配负波可有效预测预后 | 
| Steppacher等[ |  PVS、MCS | EEG | 意识是否恢复 | N400与P300联合应用有良好的预后预测能力 | 
| Casarotto等[ |  意识障碍 | TMS-EEG | 意识状态是否改善 | PCImax > 0.31预示良好结局 | 
| Kellermann等[ |  MCS、VS | S100B | GOS | 血清中S100B > 0.7 ng/mL必然造成死亡的临床结局 | 
| Lei等[ |  意识障碍 | GFAP | GOS | 血清GFAP升高是不良结局的预测因子 | 
| Czeiter等[ |  意识障碍 | GFAP | 是否存活 | GFAP血清值与致死率显著正相关 | 
| Mondello等[ |  意识障碍 | GFAP、UCH-L1、S100B | GOS | GFAP和UCH-L1可预测不良结局 | 
| Žurek等[ |  意识障碍 | Tau蛋白 | GOS | Tau蛋白与预后相关性尚不明确 | 
| [1] | 唐秋月, 韩睿, 施颖, 等. 昏迷量表定量分析对重症脑血管病预后评估的研究[J]. 交通医学, 2020, 34(6): 593-595. | 
| TANG Q Y, HAN R, SHI Y, et al. Quantitative analysis of coma scale for prognosis evaluation of severe cerebrovascular disease[J]. Med J Comm, 2020, 34(6): 593-595. | |
| [2] |  
											 ESTRANEO A, MORETTA P, LORETO V, et al. Predictors of recovery of responsiveness in prolonged anoxic vegetative state[J]. Neurology, 2013, 80(5): 464-470. 
																							 doi: 10.1212/WNL.0b013e31827f0f31  | 
										
| [3] |  
											 BODIEN Y G, CARLOWICZ C A, CHATELLE C, et al. Sensitivity and specificity of the Coma Recovery Scale-Revised Total Score in detection of conscious awareness[J]. Arch Phys Med Rehabil, 2016, 97(3): 490-492. 
																							 doi: 10.1016/j.apmr.2015.08.422  | 
										
| [4] |  
											 SATTIN D, MINATI L, ROSSI D, et al. The Coma Recovery Scale Modified Score: a new scoring system for the Coma Recovery Scale-revised for assessment of patients with disorders of consciousness[J]. Int J Rehabil Res, 2015, 38(4): 350-356. 
																							 doi: 10.1097/MRR.0000000000000135  | 
										
| [5] |  
											 PINCHERLE A, JOHR J, CHATELLE C, et al. Motor behavior unmasks residual cognition in disorders of consciousness[J]. Ann Neurol, 2019, 85(3): 443-447. 
																							 doi: 10.1002/ana.25417  | 
										
| [6] |  
											 AUBINET C, CASSOL H, BODART O, et al. Simplified evaluation of CONsciousness disorders (SECONDs) in individuals with severe brain injury: a validation study[J]. Ann Phys Rehabil Med, 2021, 64(5): 101432. 
																							 doi: 10.1016/j.rehab.2020.09.001  | 
										
| [7] |  
											 THIBAUT A, BRUNO M, CHATELLE C, et al. Metabolic activity in external and internal awareness networks in severely brain-damaged patients[J]. J Rehabil Med, 2012, 44(6): 487-494. 
																							 doi: 10.2340/16501977-0940  | 
										
| [8] |  
											 SITT J D, KING J R, EL K I, et al. Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state[J]. Brain, 2014, 137(Pt 8): 2258-2270. 
																							 doi: 10.1093/brain/awu141  | 
										
| [9] |  
											 SILVA S, de PASQUALE F, VUILLAUME C, et al. Disruption of posteromedial large-scale neural communication predicts recovery from coma[J]. Neurology, 2015, 85(23): 2036-2044. 
																							 doi: 10.1212/WNL.0000000000002196  | 
										
| [10] |  
											 DI PERRI C, BAHRI M A, AMICO E, et al. Neural correlates of consciousness in patients who have emerged from a minimally conscious state: a cross-sectional multimodal imaging study[J]. Lancet Neurol, 2016, 15(8): 830-842. 
																							 doi: 10.1016/S1474-4422(16)00111-3  | 
										
| [11] |  
											 STENDER J, KUPERS R, RODELL A, et al. Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients[J]. J Cereb Blood Flow Metab, 2015, 35(1): 58-65. 
																							 doi: 10.1038/jcbfm.2014.169  | 
										
| [12] |  
											 YU Y, MENG F, ZHANG L, et al. A multi-domain prognostic model of disorder of consciousness using resting-state fMRI and laboratory parameters[J]. Brain Imaging Behav, 2021, 15(4): 1966-1976. 
																							 doi: 10.1007/s11682-020-00390-8  | 
										
| [13] |  
											 SONG M, YANG Y, HE J, et al. Prognostication of chronic disorders of consciousness using brain functional networks and clinical characteristics[J]. Elife, 2018, 7: e36173. 
																							 doi: 10.7554/eLife.36173  | 
										
| [14] |  
											 WANG F, DI H, HU X, et al. Cerebral response to subject's own name showed high prognostic value in traumatic vegetative state[J]. BMC Med, 2015, 13: 83. 
																							 doi: 10.1186/s12916-015-0330-7  | 
										
| [15] |  
											 OKUMURA Y, ASANO Y, TAKENAKA S, et al. Brain activation by music in patients in a vegetative or minimally conscious state following diffuse brain injury[J]. Brain Inj, 2014, 28(7): 944-950. 
																							 doi: 10.3109/02699052.2014.888477  | 
										
| [16] |  
											 MONTI M M, PICKARD J D, OWEN A M. Visual cognition in disorders of consciousness: from V1 to top-down attention[J]. Hum Brain Mapp, 2013, 34(6): 1245-1253. 
																							 doi: 10.1002/hbm.v34.6  | 
										
| [17] |  
											 BABILONI C, SARA M, VECCHIO F, et al. Cortical sources of resting-state alpha rhythms are abnormal in persistent vegetative state patients[J]. Clin Neurophysiol, 2009, 120(4): 719-729. 
																							 doi: 10.1016/j.clinph.2009.02.157  | 
										
| [18] |  
											 HOFMEIJER J, BEERNINK T M J, BOSCH F H, et al. Early EEG contributes to multimodal outcome prediction of postanoxic coma[J]. Neurology, 2015, 85(2): 137-143. 
																							 doi: 10.1212/WNL.0000000000001742  | 
										
| [19] |  
											 SCHNAKERS C, LEDOUX D, MAJERUS S, et al. Diagnostic and prognostic use of bispectral index in coma, vegetative state and related disorders[J]. Brain Inj, 2008, 22(12): 926-931. 
																							 doi: 10.1080/02699050802530565  | 
										
| [20] |  
											 HOLECKOVA I, FISCHER C, GIARD M H, et al. Brain responses to a subject's own name uttered by a familiar voice[J]. Brain Res, 2006, 1082(1): 142-152. 
																							 doi: 10.1016/j.brainres.2006.01.089  | 
										
| [21] |  
											 PAN J, XIE Q, HE Y, et al. Detecting awareness in patients with disorders of consciousness using a hybrid brain-computer interface[J]. J Neural Eng, 2014, 11(5): 56007. 
																							 doi: 10.1088/1741-2560/11/5/056007  | 
										
| [22] |  
											 VENTURELLA I, CRIVELLI D, FOSSATI M, et al. EEG and autonomic responses to nociceptive stimulation in disorders of consciousness[J]. J Clin Neurosci, 2019, 60: 101-106. 
																							 doi: 10.1016/j.jocn.2018.09.020  | 
										
| [23] |  
											 CHÉLIOUT-HERAUT F, RUBINSZTAJN R, IOOS C, et al. Prognostic value of evoked potentials and sleep recordings in the prolonged comatose state of children. Preliminary data[J]. Neurophysiol Clin, 2001, 31(5): 283-292. 
																							 doi: 10.1016/S0987-7053(01)00270-2  | 
										
| [24] |  
											 WISLOWSKA M, DEL GIUDICE R, LECHINGER J, et al. Night and day variations of sleep in patients with disorders of consciousness[J]. Sci Rep, 2017, 7(1): 266. 
																							 doi: 10.1038/s41598-017-00323-4  | 
										
| [25] | ZHENG X, CHEN M, LI J, et al. Prognosis in prolonged coma patients with diffuse axonal injury assessed by somatosensory evoked potentia[J]. Neural Regen Res, 2013, 8(10): 948-954. | 
| [26] |  
											 CAVINATO M, FREO U, ORI C, et al. Post-acute P300 predicts recovery of consciousness from traumatic vegetative state[J]. Brain Inj, 2009, 23(12): 973-980. 
																							 doi: 10.3109/02699050903373493  | 
										
| [27] |  
											 LUAUTE J, MAUCORT-BOULCH D, TELL L, et al. Long-term outcomes of chronic minimally conscious and vegetative states[J]. Neurology, 2010, 75(3): 246-252. 
																							 doi: 10.1212/WNL.0b013e3181e8e8df  | 
										
| [28] | 翁绮贞, 梁灼源, 莫锦有, 等. 脑干听觉诱发电位联合脑电图监测对意识障碍患者预后的评估价值[J]. 医疗装备, 2021, 34(8): 4-5. | 
| WENG Q Z, LIANG Z Y, MO J Y, et al. Prognostic value of brainstem auditory evoked potential combined with EEG monitoring in patients with disorders of consciousness[J]. Med Equip, 2021, 34(8): 4-5. | |
| [29] | 方红. 脑干听觉诱发电位联合体感诱发电位对昏迷患者预后评估的临床价值[J]. 中国实用神经疾病杂志, 2015, 18(16): 77-78. | 
| FANG H. Clinical value of brainstem auditory evoked potential combined with somatosensory evoked potential in evaluating the prognosis of comatose patients[J]. Chin J Pract Nerv Dis, 2015, 18(16): 77-78. | |
| [30] |  
											 KOTCHOUBEY B, LANG S, MEZGER G, et al. Information processing in severe disorders of consciousness: vegetative state and minimally conscious state[J]. Clin Neurophysiol, 2005, 116(10): 2441-2453. 
																							 doi: 10.1016/j.clinph.2005.03.028  | 
										
| [31] |  
											 STEPPACHER I, FUCHS P, KAPS M, et al. A tree of life? Multivariate logistic outcome-prediction in disorders of consciousness[J]. Brain Inj, 2020, 34(3): 399-406. 
																							 doi: 10.1080/02699052.2019.1695289  | 
										
| [32] |  
											 CASAROTTO S, COMANDUCCI A, ROSANOVA M, et al. Stratification of unresponsive patients by an independently validated index of brain complexity[J]. Ann Neurol, 2016, 80(5): 718-729. 
																							 doi: 10.1002/ana.v80.5  | 
										
| [33] |  
											 KELLERMANN I, KLEINDIENST A, HORE N, et al. Early CSF and serum S100B concentrations for outcome prediction in traumatic brain injury and subarachnoid hemorrhage[J]. Clin Neurol Neurosurg, 2016, 145: 79-83. 
																							 doi: 10.1016/j.clineuro.2016.04.005  | 
										
| [34] |  
											 LEI J, GAO G, FENG J, et al. Glial fibrillary acidic protein as a biomarker in severe traumatic brain injury patients: a prospective cohort study[J]. Critical Care (London, England), 2015, 19(1): 362. 
																							 doi: 10.1186/s13054-015-1081-8  | 
										
| [35] |  
											 CZEITER E, MONDELLO S, KOVACS N, et al. Brain injury biomarkers may improve the predictive power of the IMPACT outcome calculator[J]. J Neurotr, 2012, 29(9): 1770-1778. 
																							 doi: 10.1089/neu.2011.2127  | 
										
| [36] |  
											 MONDELLO S, KOBEISSY F, VESTRI A, et al. Serum concentrations of ubiquitin C-terminal hydrolase-L1 and glial fibrillary acidic protein after pediatric traumatic brain injury[J]. Sci Rep, 2016, 6: 28203. 
																							 doi: 10.1038/srep28203  | 
										
| [37] |  
											 ŽUREK J, FEDORA M. The usefulness of S100B, NSE, GFAP, NF-H, secretagogin and Hsp70 as a predictive biomarker of outcome in children with traumatic brain injury[J]. Acta Neurochir (Wien), 2012, 154(1): 93-103. 
																							 doi: 10.1007/s00701-011-1175-2  | 
										
| [38] |  
											 TEASDALE G. Assessment of head injuries[J]. Br J Anaesth, 1976, 48(8): 761-766. 
																							 doi: 10.1093/bja/48.8.761  | 
										
| [39] | MATIS G, BIRBILIS T. The Glasgow Coma Scale: a brief review. Past, present, future[J]. Acta Neurol Belg, 2008, 108(3): 75-89. | 
| [40] |  
											 WIJDICKS E F M, BAMLET W R, MARAMATTOM B V, et al. Validation of a new coma scale: The FOUR score[J]. Ann Neurol, 2005, 58(4): 585-593. 
																							 doi: 10.1002/(ISSN)1531-8249  | 
										
| [41] |  
											 GIACINO J T, KEZMARSKY M A, DELUCA J, et al. Monitoring rate of recovery to predict outcome in minimally responsive patients[J]. Arch Phys Med Rehabil, 1991, 72(11): 897-901. 
																							 doi: 10.1016/0003-9993(91)90008-7  | 
										
| [42] |  
											 GIACINO J T, KALMAR K, WHYTE J. The JFK Coma Recovery Scale-Revised: Measurement characteristics and diagnostic utility[J]. Arch Phys Med Rehabil, 2004, 85(12): 2020-2029. 
																							 doi: 10.1016/j.apmr.2004.02.033  | 
										
| [43] |  
											 SCHIFF N D. Cognitive motor dissociation following severe brain injuries[J]. JAMA Neurol, 2015, 72(12): 1413-1415. 
																							 doi: 10.1001/jamaneurol.2015.2899  | 
										
| [44] |  
											 FAN L, LI H, ZHUO J, et al. The human brainnetome atlas: a new brain atlas based on connectional architecture[J]. Cerebral Cortex, 2016, 26(8): 3508-3526. 
																							 doi: 10.1093/cercor/bhw157  | 
										
| [45] |  
											 LAUREYS S, GOLDMAN S, PHILLIPS C, et al. Impaired effective cortical connectivity in vegetative state: preliminary investigation using PET[J]. Neuroimage, 1999, 9(4): 377-382. 
																							 doi: 10.1006/nimg.1998.0414  | 
										
| [46] |  
											 KONDZIELLA D, BENDER A, DISERENS K, et al. European Academy of Neurology guideline on the diagnosis of coma and other disorders of consciousness[J]. Eur J Neurol, 2020, 27(5): 741-756. 
																							 doi: 10.1111/ene.v27.5  | 
										
| [1] | WANG Hangyu, GE Keke, FAN Yonghong, DU Lilu, ZOU Min, FENG Lei. Effect of active music therapy on cognitive function for older adults with cognitive impairment: a systematic review based on ICD-11 and ICF [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 36-43. | 
| [2] | WEN Jianing, JIN Qiuyan, ZHANG Qi, LI Jie, SI Qi. Effect of cognitively engaging physical activity on developing executive function of children and adolescents: a systematic review based on ICF [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 44-53. | 
| [3] | GE Keke, FAN Yonghong, WANG Hangyu, DU Lilu, LI Changjiang, ZOU Min. Health benefit of mindfulness intervention for older adults with insomnia disorders: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 54-60. | 
| [4] | ZHANG Jingya, ZOU Min, SUN Hongwei, SUN Changlong, ZHU Juntong. Effect of psychological intervention on anxiety or depression in children and adolescents with hearing impairment: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1004-1011. | 
| [5] | WANG Junyu, YANG Yong, YUAN Xun, XIE Ting, ZHUANG Jie. Effect of high-intensity interval training on executive function for healthy children and adolescents: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1012-1020. | 
| [6] | WEI Xiaowei, YANG Jian, WEI Chunyan. Psychological and behavioral benefits of adapted yoga exercise for children with autism spectrum disorder in special education schools: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1021-1028. | 
| [7] | YANG Yaru, YANG Jian. School-based physical activity-related health services and their health benefits within the World Health Organization health-promoting school framework: a systematic review of systematic reviews [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1040-1047. | 
| [8] | WANG He, HAN Liang, KAN Mengfan, YU Shaohong. Efficacy of electrical stimulation on shoulder-hand syndrome after stroke: a systematic review and meta-analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1048-1056. | 
| [9] | SHI Jiawei, LI Lingyu, YANG Haojie, WANG Qinlu, ZOU Haiou. Effect of preoperative prerehabilitation training on total knee arthroplasty: a systematic review of systematic reviews [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1057-1064. | 
| [10] | JIANG Changhao, HUANG Chen, GAO Xiaoyan, DAI Yuanfu, ZHAO Guoming. Effect of neurofeedback training on cognitive function in the elderly: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(8): 903-909. | 
| [11] | WEI Xiaowei, YANG Jian, WEI Chunyan, HE Qiling. Adapted physical education programs for psychomotor development in school settings for children with intellectual and developmental disabilities: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(8): 910-918. | 
| [12] | WANG Shaopu, CHEN Gang. Psychological-behavioral health services and its outcome based on World Health Organization health-promoting school framework: a systematic review of systematic reviews [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(7): 800-807. | 
| [13] | JIANG Changhao, GAO Xiaoyan. Effect of acute physical activity on cognitive function in children: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(6): 667-672. | 
| [14] | YU Zhongqi, WANG Chao, HE Gang, ZHANG Liang, WANG Ruiyan. Effect of short-foot exercise on adult flatfoot: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(5): 551-557. | 
| [15] | LAN Shiling, PANG Wei, LI Xin, LIU Mengyun, ZHAN Yujun. Effect of action observation therapy on upper limb function in cerebral palsy: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(5): 558-564. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
										
  | 
								||