Chinese Journal of Rehabilitation Theory and Practice ›› 2025, Vol. 31 ›› Issue (5): 520-528.doi: 10.3969/j.issn.1006-9771.2025.05.004
Previous Articles Next Articles
PAN Yi1a, HOU Shuanglong1a, WEN Xiaoni1b()
Received:
2025-02-27
Revised:
2025-04-11
Published:
2025-05-25
Online:
2025-05-26
Contact:
WEN Xiaoni, E-mail: weniweni@163.com
Supported by:
CLC Number:
PAN Yi, HOU Shuanglong, WEN Xiaoni. Transcutaneous vagus nerve stimulation for executive function in adults: a scoping review[J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(5): 520-528.
Table 2
Score of PEDro scale of the included literatures"
纳入文献 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 总分 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pan等[ | √ | √ | √ | √ | √ | √ | √ | √ | 7 | |||
Zhao等[ | √ | √ | √ | √ | √ | √ | 5 | |||||
Konjusha等[ | √ | √ | √ | √ | √ | √ | √ | 6 | ||||
Camargo等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 10 |
Zhu等[ | √ | √ | √ | √ | √ | √ | √ | 6 | ||||
Choudhary等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 8 | ||
Konjusha等[ | √ | √ | √ | √ | √ | √ | √ | 6 | ||||
Sun等[ | √ | √ | √ | √ | √ | √ | 5 | |||||
Pihlaja等[ | √ | √ | √ | √ | √ | √ | √ | 6 | ||||
Tona等[ | √ | √ | √ | √ | √ | √ | √ | 6 | ||||
Borges等[ | √ | √ | √ | √ | √ | √ | √ | 6 | ||||
Keute等[ | √ | √ | √ | √ | √ | √ | √ | √ | 7 | |||
Jongkees等[ | √ | √ | √ | √ | √ | √ | √ | 6 | ||||
Beste等[ | √ | √ | √ | √ | √ | √ | √ | 6 |
Table 3
Basic characteristics of the included literatures"
纳入文献 | 国家 | 研究类型 | 样本量(C/T)/n | 受试对象 | 干预(C/T) | 结局指标 | 评价指标 | 主要结局 |
---|---|---|---|---|---|---|---|---|
Pan等[ | 中国 | 随机对照试验 | 9/19 | 难治性颞叶癫痫患者 | 假刺激/tVNS | 工作记忆 | 视觉延迟与样本匹配任务,脑电图 | 任务反应时间缩短;额叶中线θ振荡下降 |
Zhao等[ | 中国 | 交叉研究 | 25 | 睡眠剥夺人群 | 假刺激/tVNS | 工作记忆 | N-back任务 | 任务准确率提高 |
Konjusha等[ | 德国 | 交叉研究 | 37 | 健康成年人 | 假刺激/tVNS | 抑制控制 | Flanker任务,脑电图 | 任务准确率降低;前额叶区域α波段活性降低 |
Camargo等[ | 美国 | 随机对照试验 | 20/21 | 健康成年人 | 假刺激/tVNS | 抑制控制 | Go/No-go任务,脑电图 | 任务表现无显著变化;N2波幅提高 |
Zhu等[ | 中国 | 随机对照试验 | 41/41 | 健康成年人 | 假刺激/tVNS | 抑制控制 | Go/No-go 任务,功能性近红外光谱 | 任务准确性提高;双侧颞下回-眶额叶网络连接增强 |
Choudhary等[ | 美国 | 随机对照试验 | 7/8 | 创伤后应激障碍患者 | 假刺激/tVNS | 工作记忆 | N-back任务 | 任务表现无显著变化 |
Konjusha等[ | 德国 | 交叉研究 | 37 | 健康成年人 | 假刺激/tVNS | 工作记忆 | N-back任务,脑电图 | 任务反应时间缩短,准确率提高;额叶及下顶叶区域α波活性增强 |
Sun等[ | 中国 | 交叉研究 | 58 | 健康成年人 | 假刺激/任务前tVNS/任务中tVNS | 工作记忆 | N-back任务 | 任务准确率提高;反应时间缩短 |
Pihlaja等[ | 芬兰 | 交叉研究 | 25 | 健康成年人 | 假刺激/tVNS | 抑制控制 | Go/No-go任务,脑电图 | 任务表现无显著变化;N2波幅降低 |
Tona等[ | 荷兰 | 交叉研究 | 72 | 健康成年人 | 不同刺激强度的tVNS | 认知灵活性 | 可预测的线索任务转换任务 | 任务表现无显著变化 |
Borges等[ | 德国 | 交叉研究 | 64 | 健康成年人 | 假刺激/tVNS | 认知灵活性 | 数字-字母任务,尺寸变更卡排序任务 | 任务反应时间缩短 |
Keute等[ | 德国 | 交叉研究 | 22 | 健康成年人 | 假刺激/tVNS | 抑制控制 | Go/No-go任务,脑电图 | 任务准确性提高;额中线θ活动增强 |
Jongkees等[ | 荷兰 | 随机对照试验 | 20/20 | 健康成年人 | 假刺激/tVNS | 抑制控制 | 序列反应时任务 | 任务反应时间缩短 |
Beste等[ | 德国 | 随机对照试验 | 26/26 | 健康成年人 | 假刺激/tVNS | 抑制控制 | 后抑制任务,反应抑制任务 | 反应抑制任务准确率提高 |
Table 4
Intervention parameters of tVNS of the included literatures"
纳入文献 | 刺激靶点 | 刺激强度 | 脉冲宽度 | 频率 | 通断周期 | 持续时间 |
---|---|---|---|---|---|---|
Pan等[ | 耳甲艇 | 30~50 V | 250 μs | 25 Hz | 未报告 | 每次30 min,每天3~5次,共20周 |
Zhao等[ | 左侧耳甲艇 | 患者主观感受中等强度 | 500 ms | 25 Hz | 30 s开/30 s关 | 每次30 min,共1次 |
Konjusha等[ | 左侧耳甲艇 | 0.5 mA | 200~300 ms | 25 Hz | 30 s开/30 s关 | 任务前20 min+任务全过程,共1次 |
Camargo等[ | 双侧耳甲 | 患者主观耐受阈值 | 200~250 μs | 30 Hz | 连续刺激 | 每次60 min,共1次 |
Zhu等[ | 左侧耳甲 | 平均0.8 mA | 200~250 μs | 30 Hz | 30 s开/30 s关 | 每次30 min,共1次 |
Choudhary等[ | 左侧颈部靠近甲状软骨区域 | 30 V | 200 μs | 25 Hz | 未报告 | 每次5 min,每天2次,共12周 |
Konjusha等[ | 耳甲艇 | 患者主观耐受阈值 | 200~300 ms | 25 Hz | 连续刺激 | 任务前20 min+任务全过程,共1次 |
Sun等[ | 左侧耳甲艇 | 患者主观感受中等强度 | 500 ms | 25 Hz | 30 s开/30 s关 | 每次40 min,共1次 |
Pihlaja等[ | 耳屏 | 患者主观耐受阈值 | 250 ms | 25 Hz | 未报告 | 每次52 min,共1次 |
Tona等[ | 左侧耳甲 | 0.5 mA | 200~300 μs | 25 Hz | 30 s开/30 s关 | 每次75 min,共1次 |
Borges等[ | 左侧耳甲艇 | 平均2.2 mA | 200~300 μs | 25 Hz | 连续刺激 | 任务前16 min+任务全过程,共1次 |
Keute等[ | 左侧耳甲艇 | 平均2.4 mA | 200 μs | 25 Hz | 30 s开/30 s关 | 每次46 min,共1次 |
Jongkees等[ | 左侧耳屏 | 0.5 mA | 200~300 μs | 25 Hz | 30 s开/30 s关 | 每次45 min,共1次 |
Beste等[ | 左侧耳甲 | 0.5 mA | 200~300 μs | 25 Hz | 30 s开/30 s关 | 每次30 min,共1次 |
[1] |
DIAMOND A. Executive functions[J]. Annu Rev Psychol, 2013, 64: 135-168.
doi: 10.1146/annurev-psych-113011-143750 pmid: 23020641 |
[2] | PAN L, WANG J, WU W, et al. Transcutaneous auricular vagus nerve stimulation improves working memory in temporal lobe epilepsy: a randomized double-blind study[J]. CNS Neurosci Ther, 2024, 30(2): e14395. |
[3] |
LEVINE D A, GALECKI A T, LANGA K M, et al. Trajectory of cognitive decline after incident stroke[J]. JAMA, 2015, 314(1): 41-51.
doi: 10.1001/jama.2015.6968 pmid: 26151265 |
[4] |
ROCK P L, ROISER J P, RIEDEL W J, et al. Cognitive impairment in depression: a systematic review and meta-analysis[J]. Psychol Med, 2014, 44(10): 2029-2040.
doi: 10.1017/S0033291713002535 pmid: 24168753 |
[5] | THAI M L, ANDREASSEN A K, BLIKSTED V. A meta-analysis of executive dysfunction in patients with schizophrenia: different degree of impairment in the ecological subdomains of the behavioural assessment of the dysexecutive syndrome[J]. Psychiatry Res, 2019, 272: 230-236. |
[6] | KIROVA A M, BAYS R B, LAGALWAR S. Working memory and executive function decline across normal aging, mild cognitive impairment, and Alzheimer's disease[J]. Biomed Res Int, 2015, 2015: 748212. |
[7] | RATTANAVICHIT Y, CHAIKEEREE N, BOONSINSUKH R, et al. The age differences and effect of mild cognitive impairment on perceptual-motor and executive functions[J]. Front Psychol, 2022, 13: 906898. |
[8] |
FERGUSON H J, BRUNSDON V E A, BRADFORD E E F, et al. The developmental trajectories of executive function from adolescence to old age[J]. Sci Rep, 2021, 11(1): 1382.
doi: 10.1038/s41598-020-80866-1 pmid: 33446798 |
[9] |
WANG Y, LI SY, WANG D, et al. Transcutaneous auricular vagus nerve stimulation: from concept to application[J]. Neurosci Bull, 2021, 37(6): 853-862.
doi: 10.1007/s12264-020-00619-y pmid: 33355897 |
[10] |
SHARON O, FAHOUM F, NIR Y. Transcutaneous vagus nerve stimulation in humans induces pupil dilation and attenuates alpha oscillations[J]. J Neurosci, 2021, 41(2): 320-330.
doi: 10.1523/JNEUROSCI.1361-20.2020 pmid: 33214317 |
[11] | YAN L, ZHANG J, SUN Y, et al. Transcutaneous vagus nerve stimulation: a bibliometric study on current research hotspots and status[J]. Front Neurosci, 2024, 18: 1406135. |
[12] | ZHAO R, CHANG M Y, CHENG C, et al. Transcutaneous auricular vagus nerve stimulation (taVNS) improves human working memory performance under sleep deprivation stress[J]. Behav Brain Res, 2023, 439: 114247. |
[13] |
TAN G, ADAMS J, DONOVAN K, et al. Does vibrotactile stimulation of the auricular vagus nerve enhance working memory? A behavioral and physiological investigation[J]. Brain Stimul, 2024, 17(2): 460-468.
doi: 10.1016/j.brs.2024.04.002 pmid: 38593972 |
[14] | KONJUSHA A, COLZATO L, MÜCKSCHEL M, et al. Auricular transcutaneous vagus nerve stimulation diminishes alpha-band-related inhibitory gating processes during conflict monitoring in frontal cortices[J]. Int J Neuropsychopharmacol, 2022, 25(6): 457-467. |
[15] |
TRICCO AC, LILLIE E, ZARIN W, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): checklist and explanation[J]. Ann Intern Med, 2018, 169(7): 467-473.
doi: 10.7326/M18-0850 pmid: 30178033 |
[16] |
CASHIN A G, MCAULEY J H. Clinimetrics: Physiotherapy Evidence Database (PEDro) scale[J]. J Physiother, 2020, 66(1): 59.
doi: S1836-9553(19)30092-X pmid: 31521549 |
[17] |
CAMARGO L, PACHECO-BARRIOS K, GIANLORENÇO A C, et al. Evidence of bottom-up homeostatic modulation induced taVNS during emotional and Go/No-Go tasks[J]. Exp Brain Res, 2024, 242(9): 2069-2081.
doi: 10.1007/s00221-024-06876-x pmid: 38963558 |
[18] | ZHU S, LIU Q, ZHANG X, et al. Transcutaneous auricular vagus nerve stimulation enhanced emotional inhibitory control via increasing intrinsic prefrontal couplings[J]. Int J Clin Health Psychol, 2024, 24(2): 100462. |
[19] | CHOUDHARY T, ELLIOTT M, EULIANO N R, et al. Effect of transcutaneous cervical vagus nerve stimulation on declarative and working memory in patients with posttraumatic stress disorder (PTSD): a pilot study[J]. J Affect Disord, 2023, 339: 418-425. |
[20] |
KONJUSHA A, YU S, MÜCKSCHEL M, et al. Auricular transcutaneous vagus nerve stimulation specifically enhances working memory gate closing mechanism: a system neurophysiological study[J]. J Neurosci, 2023, 43(25): 4709-4724.
doi: 10.1523/JNEUROSCI.2004-22.2023 pmid: 37221097 |
[21] | SUN J B, CHENG C, TIAN Q Q, et al. Transcutaneous auricular vagus nerve stimulation improves spatial working memory in healthy young adults[J]. Front Neurosci, 2021, 15: 790793. |
[22] | PIHLAJA M, FAILLA L, PERÄKYLÄ J, et al. Reduced frontal No-go-N2 with uncompromised response inhibition during transcutaneous vagus nerve stimulation-more efficient cognitive control[J]. Front Hum Neurosci, 2020, 14: 561780. |
[23] | TONA K D, REVERS H, VERKUIL B, et al. Noradrenergic regulation of cognitive flexibility: no effects of stress, transcutaneous vagus nerve stimulation, and atomoxetine on task-switching in humans[J]. J Cogn Neurosci, 2020, 32(10): 1881-1895. |
[24] | BORGES U, KNOPS L, LABORDE S, et al. Transcutaneous vagus nerve stimulation may enhance only specific aspects of the core executive functions. A randomized crossover trial[J]. Front Neurosci, 2020, 14: 523. |
[25] | KEUTE M, BARTH D, LIEBRAND M, et al. Effects of transcutaneous vagus nerve stimulation (tVNS) on conflict-related behavioral performance and frontal midline theta activity[J]. J Cogn Enhanc, 2020, 4(4): 121-130. |
[26] |
JONGKEES B J, IMMINK M A, FINISGUERRA A, et al. Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during sequential action[J]. Front Psychol, 2018, 9: 1159.
doi: 10.3389/fpsyg.2018.01159 pmid: 30034357 |
[27] | BESTE C, STEENBERGEN L, SELLARO R, et al. Effects of concomitant stimulation of the GABAergic and norepinephrine system on inhibitory control: a study using transcutaneous vagus nerve stimulation[J]. Brain Stimul, 2016, 9(6): 811-818. |
[28] |
BUTT M F, ALBUSODA A, FARMER A D, et al. The anatomical basis for transcutaneous auricular vagus nerve stimulation[J]. J Anat, 2020, 236(4): 588-611.
doi: 10.1111/joa.13122 pmid: 31742681 |
[29] | BONAZ B, BAZIN T, PELLISSIER S. The vagus nerve at the interface of the microbiota-gut-brain axis[J]. Front Neurosci, 2018, 12: 49. |
[30] | WANG C, CAO X, GAO Z, et al. Training and transfer effects of combining inhibitory control training with transcutaneous vagus nerve stimulation in healthy adults[J]. Front Psychol, 2022, 13: 858938. |
[31] | ARON A R. From reactive to proactive and selective control: developing a richer model for stopping inappropriate responses[J]. Biol Psychiatry, 2011, 69(12): e55-68. |
[32] |
FAN J, FLOMBAUM J I, MCCANDLISS B D, et al. Cognitive and brain consequences of conflict[J]. NeuroImage, 2003, 18(1): 42-57.
doi: 10.1006/nimg.2002.1319 pmid: 12507442 |
[33] |
OWEN A M, MCMILLAN K M, LAIRD A R, et al. N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies[J]. Hum Brain Mapp, 2005, 25(1): 46-59.
doi: 10.1002/hbm.20131 pmid: 15846822 |
[34] | ZHAO R, HE Z Y, CHENG C, et al. Assessing the effect of simultaneous combining of transcranial direct current stimulation and transcutaneous auricular vagus nerve stimulation on the improvement of working memory performance in healthy individuals[J]. Front Neurosci, 2022, 16: 947236. |
[35] |
HULSEY D R, RILEY J R, et al. Parametric characterization of neural activity in the locus coeruleus in response to vagus nerve stimulation[J]. Exp Neurol, 2017, 289: 21-30.
doi: S0014-4886(16)30405-8 pmid: 27988257 |
[36] | FARMER A D, STRZELCZYK A, FINISGUERRA A, et al. International consensus based review and recommendations for minimum reporting standards in research on transcutaneous vagus nerve stimulation (version 2020)[J]. Front Hum Neurosci, 2021, 14: 568051. |
[37] |
SUN L, PERÄKYLÄ J, HOLM K, et al. Vagus nerve stimulation improves working memory performance[J]. J Clin Exp Neuropsychol, 2017, 39(10): 954-964.
doi: 10.1080/13803395.2017.1285869 pmid: 28492363 |
[38] |
OEHRN C R, MOLITOR L, KRAUSE K, et al. Non-invasive vagus nerve stimulation in epilepsy patients enhances cooperative behavior in the prisoner's dilemma task[J]. Sci Rep, 2022, 12(1): 10255.
doi: 10.1038/s41598-022-14237-3 pmid: 35715460 |
[39] |
REDGRAVE J, DAY D, LEUNG H, et al. Safety and tolerability of transcutaneous vagus nerve stimulation in humans; a systematic review[J]. Brain Stimul, 2018, 11(6): 1225-1238.
doi: S1935-861X(18)30293-6 pmid: 30217648 |
[40] |
DUFF I T, LIKAR R, PERRUCHOUD C, et al. Clinical efficacy of auricular vagus nerve stimulation in the treatment of chronic and acute pain: a systematic review and meta-analysis[J]. Pain Ther, 2024, 13(6): 1407-1427.
doi: 10.1007/s40122-024-00657-8 pmid: 39382792 |
[1] | XU Xiaohong, ZHONG Xiaoke, SUN Siyi, ZHANG Qi, CHENG Huaichun. Psychological benefits of art therapy for older adults with mild cognitive impairment: a systematic review [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(2): 165-171. |
[2] | WANG Xiaoxiao, QU Lu, WANG Jiaxin, ZHAO Meiping, LI Muzi, LIU Qiaoyun. Structure, content and psychometric properties of assessment tools for interoceptive function: a scoping review based on COSMIN and ICF [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(2): 172-183. |
[3] | JIANG Changhao, JIANG Xianxin, HUANG Chen, ZHONG Xiaoke. Application of artificial intelligence in diagnosis and intervention in sleep disorder for older adults: a scoping review using ICF [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(8): 922-929. |
[4] | WANG Zhe, WAN Qin, HUANG Zhaoming, WANG Yongli, QIAN Hong. Characteristics of speech prosody function in adults with non-fluent aphasia after stroke [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(8): 979-992. |
[5] | CAO Yaping, LI Ju, HUANG Minghao, LI Zhongcheng, LANG Jian. Risk factors, health and rehabilitation intervention strategies for low back pain in adult golfers: a scoping review [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(6): 657-664. |
[6] | WEN Nana, ZHANG Xinhui, LONG Qing, WANG Yuhao, YU Qunping, ZHANG Hanchun, ZHENG Guohua. Predictive value of gait and balance on frailty in community-dwelling older adults in Shanghai, China [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(6): 731-736. |
[7] | SU Rufeng, ZHONG Xiaoke, GAO Xiaoyan, JIANG Changhao. Application of artificial intelligence in anxiety and depression among children and adolescents: a scoping review [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(5): 513-519. |
[8] | ZHONG Xiaoke, WANG Qi, CHANG Siqin, JIANG Changhao. Effect of long-term physical activity on executive function of children with autism spectrum disorder: a systematic review [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(5): 535-542. |
[9] | SU Zhaoyin, KANG Weihan, LIU Yatao, LÜ Yuan, Michael NERLICH. Relationship between physical activity levels and stroke risk among middle-aged and older adults in China based on CHARLS data [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(4): 449-453. |
[10] | LI Liang, HUANG Ziyun, YANG Yicheng, WU Xueping. Effect of ball-based physical activity on basic motor skills and executive function in children with attention deficit hyperactivity disorder [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(4): 479-486. |
[11] | LIU Hui, YIN Hang, HU Chenghong, JIA Shaohui, FENG Yewenzhe, HU Qingkui. Content and psychometric properties of functional measurements in patients with sarcopenia based on ICF [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(3): 273-280. |
[12] | HUANG Xing, CHANG Jingling, ZHANG Zihan, LI Ying. Characteristics of event-related potential and frequency on working memory of post-stroke aphasia [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(3): 316-325. |
[13] | WU Jinlong, REN Zhanbing, YI Zizhen, PENG Li. Characteristics of interbrain synchrony during interactions among individuals with autism spectrum disorder: a scoping review [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(2): 168-175. |
[14] | LIU Hua, JIA Mingyue, DU Xiaoxia, YANG Yaru, LI Jing, LÜ Jihui. Physical fitness and characteristics of cognitive function among people aged 55 to 75 years with high and low risk of dementia in communities in Beijing [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(2): 195-201. |
[15] | MA Xiaochen, LI Shufan, JIA Shuqi, LIU Cong, ZHANG Zhenyu, HAN Dongyang. Relationship of physical activity and cognitive function to sleep quality in older adults with cognitive impairment: a mediating effect of resting EEG [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(12): 1442-1451. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|