Chinese Journal of Rehabilitation Theory and Practice ›› 2025, Vol. 31 ›› Issue (6): 674-681.doi: 10.3969/j.issn.1006-9771.2025.06.008
Previous Articles Next Articles
WU Xiaohui1, JIANG Lei2, ZHU Jingru3, XIE Lihui4
Received:
2025-04-24
Revised:
2025-04-30
Published:
2025-06-25
Online:
2025-06-16
Supported by:
CLC Number:
WU Xiaohui, JIANG Lei, ZHU Jingru, XIE Lihui. Deep learning for diagnosis of mild cognitive impairment in older adults: a scoping review[J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(6): 674-681.
Table 1
Scores of quality of included literatures"
纳入文献 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 总分 |
---|---|---|---|---|---|---|---|---|---|
Ciarmiello等[ | √ | √ | √ | √ | √ | √ | √ | 7 | |
Pourramezan Fard等[ | √ | √ | √ | √ | √ | √ | 6 | ||
Khatri等[ | √ | √ | √ | √ | √ | √ | 6 | ||
Suk等[ | √ | √ | √ | √ | √ | √ | 6 | ||
Yoon等[ | √ | √ | √ | √ | √ | √ | √ | 7 | |
Kim等[ | √ | √ | √ | √ | √ | √ | √ | 7 | |
Suk等[ | √ | √ | √ | √ | √ | √ | 6 | ||
Liu等[ | √ | √ | √ | √ | √ | √ | √ | 7 | |
Rashid等[ | √ | √ | √ | √ | √ | √ | 6 | ||
Lee等[ | √ | √ | √ | √ | √ | √ | 6 | ||
Etminani等[ | √ | √ | √ | √ | √ | √ | 6 |
Table 2
Basic characteristics of included literatures"
纳入文献 | 国家 | 年龄/岁 | 被试数量 | 研究方法 | 数据来源与类型 | 预测 指标 | 评价指标 | 深度学习模型 |
---|---|---|---|---|---|---|---|---|
Ciarmiello等[ | 意大利 | 72±7.4 MCI: 73.6±8.0 HC:70.8±6.2 | n = 328 (MCI = 179;HC = 149) 测试集:15% 训练集:70% 验证集:15% | 横断面研究 | ADNI数据库;18F florbetaben PET成像数据 | MCI与HC诊断 | 准确率80% AUC: 测试集:0.9 整体样本:0.94 | 模型:FNN |
Pourramezan Fard等[ | 美国 | 75~92 | n = 68 (MCI = 34;NC = 34) 5折交叉验证 测试集 = 13~14 训练集 = 55~56 | 横断面研究 | I-CONECT项目,对68例75岁及以上老人(分为MCI组和NC组)进行每次30 min、每周4次、共6个月的半结构化视频访谈,采集访谈音频并转录为文本,构建研究数据集 | MCI与NC诊断 | 准确率85.16% AUC:0.85 | 模型:NLP+MLP 优化器:Adam |
Khatri等[ | 韩国 | 56~91 | n = 1075 (AD = 390;MCI = 370;HC=315) 测试集 = 107 训练集 = 968 | 横断面研究 | ADNI数据库;sMRI数据 | AD、MCI与HC诊断 | 准确率: 多分类:94.31% MCI/HC:92.15% AUC = 0.96 | 模型:CNN+自注意力机制 优化器:AdamW+AdamWGC |
Suk等[ | 美国 | 55~89 | n = 398 (AD = 93;MCI = 204;NC = 101) 10折交叉验证 训练集 = 约358 测试集 = 约40 | 横断面研究 | ADNI数据库;基线的T1加权sMRI数据、18F-FDG-PET数据 | AD、MCI与NC诊断 MCI-C与MCI-NC区分 | MCI/NC: 准确率85.67% AUC = 0.8808 MCI-C/MCI-NC: 准确率75.92% AUC = 0.7466 | 模型:DBM |
Yoon等[ | 韩国 | ADNI1(超分辨率) AD:57~91 MCI:60~87 NC:56~88 ADNI1(分类) AD:55~88 MCI:55~89 NC:62~86 ADNI3(分类) AD:56~90 MCI:55~91 NC:52~91 | ADNI1(超分辨率) n1 = 170 (AD = 38;MCI = 54;NC = 78) ADNI1(分类) n2 = 403 (AD = 95;MCI = 206;NC = 102) ADNI3(分类) n3 = 1014(AD = 122;MCI = 387;NC = 605) AIBL(外部验证):n = 116 | 横断面研究 | ADNI数据库和AIBL数据库;1.5 T和3 T的MRI数据 | AD与MCI诊断 | MCI/NC: 准确率85.2% AUC = 0.847 AD/MCI: 准确率81.7% AUC=0.813 | 模型:CNN、diffusion model-based generative AI |
Kim等[ | 韩国 | 55~90 | n = 202 (HC = 52;MCI = 99;AD = 51) 采用10折交叉验证 训练集 = 181 测试集 = 21 | 横断面研究 | ADNI数据库;基线T1加权sMRI数据、18F-FDG-PET数据、CSF数据 | AD、MCI与HC诊断 | MCI/HC: 准确率87.09% | 模型:MSH-ELM |
Suk等[ | 韩国、新加坡、美国 | ADNI2 MCI:73.9 NC:73.8 In-house MCI:75.0 NC:72.9 | ADNI2 n1 = 62(MCI = 31;NC = 31) In-house n2 = 37(MCI = 12;NC = 25) 留一法交叉验证 | 横断面研究 | ADNI2数据集和In-house数据集;rs-fMRI数据 | MCI与NC诊断 | ADNI2: 准确率72.58% In-house: 准确率81.08% | 模型:DAE+HMM |
Liu等[ | 中国 | AD:75.9±6.8 MCI:75.2±7.3 NC:75.9±5.0 | n = 449 (AD = 97;MCI = 233;NC = 119) 5折交叉验证 训练集 = 89 测试集 = 360 | 横断面研究 | ADNI数据库;基线的T1加权sMRI扫描数据 | AD、MCI与NC诊断 | MCI/NC:准确率76.2%,AUC = 0.775 | 模型:CNN 优化器:Adam |
Rashid等[ | 印度 | 未说明 | n = 6765 (AD = 1365;MCI = 3100;CN = 2500) 训练集:80% 测试集:20% | 横断面研究 | ADNI、AIBL、OASIS数据库;2D MRI数据 | AD、MCI与NC诊断 | MCI/AD:准确率98.16% CN/MCI/AD:准确率97.80% | 模型:Biceph-net轻量级框架 优化器:Adam |
Lee等[ | 韩国 | CN:62~89 平均71.1 eMCI:56~92 平均75.2 | n = 101 (eMCI = 53;NC = 48) 10折交叉验证 | 横断面研究 | ADNI数据库;rs-fMRI数据 | eMCI与NC诊断 | 准确率74.42% AUC = 0.7438 | 模型:CNN+强化学习+GCN 优化器:Adam |
Etminani等[ | 多国合作 | ADNI 男性56~92,平均76.7;女性56~96,平均76.2 EDLB 男性48~91,平均72.7;女性50~86,平均72.9 | n = 757 (AD = 200;MCI-AD = 200;DLB = 157;NC = 200) 训练集 = 684 测试集 = 73 | 横断面研究 | ADNI数据库和EDLB数据库;18F-FDG PET扫描数据 | AD、DLB、MCI-AD与NC诊断 | DLB:AUC = 0.962 MCI-AD:AUC = 0.714 NC:AUC = 0.947 | 模型:3D CNN 优化器:Adadelta |
[1] |
SPRUNG J, ROBERTS R O, WEINGARTEN T N, et al. Postoperative delirium in elderly patients is associated with subsequent cognitive impairment[J]. Br J Anaesth, 2017, 119(2): 316-323.
doi: 10.1093/bja/aex130 pmid: 28854531 |
[2] | STEPHAN B C M, COCHRANE L, KAFADAR A H, et al. Population attributable fractions of modifiable risk factors for dementia: a systematic review and meta-analysis[J]. Lancet Healthy Longev, 2024, 5(6): e406-e421. |
[3] |
LEHMANN S, SCHRAEN-MASCHKE S, VIDAL J S, et al. Plasma phosphorylated tau 181 predicts amyloid status and conversion to dementia stage dependent on renal function[J]. J Neurol Neurosurg Psychiatry, 2023, 94(6): 411-419.
doi: 10.1136/jnnp-2022-330540 pmid: 37012068 |
[4] | LEDUC V, DE BEAUMONT L, THÉROUX L, et al. HMGCR is a genetic modifier for risk, age of onset and MCI conversion to Alzheimer's disease in a three cohorts study[J]. Mol Psychiatry, 2015, 20(7): 867-873. |
[5] | YIN C, IMMS P, CHENG M, et al. Anatomically interpretable deep learning of brain age captures domain-specific cognitive impairment[J]. Proc Natl Acad Sci U S A, 2023, 120(2): e2214634120. |
[6] |
HUCKANS M, HUTSON L, TWAMLEY E, et al. Efficacy of cognitive rehabilitation therapies for mild cognitive impairment (MCI) in older adults: working toward a theoretical model and evidence-based interventions[J]. Neuropsychol Rev, 2013, 23(1): 63-80.
doi: 10.1007/s11065-013-9230-9 pmid: 23471631 |
[7] | METZLER-BADDELEY C, HUNT S, JONES D K, et al. Temporal association tracts and the breakdown of episodic memory in mild cognitive impairment[J]. Neurology, 2012, 79(23): 2233-2240. |
[8] | LIU Z, ZHANG L, BAI L, et al. Repetitive transcranial magnetic stimulation and Tai Chi Chuan for older adults with sleep disorders and mild cognitive impairment: a randomized clinical trial[J]. JAMA Netw Open, 2025, 8(1): e2454307. |
[9] |
MASSOUD F, BELLEVILLE S, BERGMAN H, et al. Mild cognitive impairment and cognitive impairment, no dementia: Part B, therapy[J]. Alzheimers Dement, 2007, 3(4): 283-291.
doi: 10.1016/j.jalz.2007.07.002 pmid: 19595949 |
[10] | COGNÉ É, POSTUMA R B, CHASLES M J, et al. Montreal Cognitive Assessment and the Clock Drawing Test to identify MCI and predict dementia in isolated REM sleep behavior disorder[J]. Neurology, 2024, 102(4): e208020. |
[11] | ZHANG L, WANG L, GAO J, et al. Deep fusion of brain structure-function in mild cognitive impairment[J]. Med Image Anal, 2021, 72: 102082. |
[12] |
GROOT C, SMITH R, COLLIJ L E, et al. Tau positron emission tomography for predicting dementia in individuals with mild cognitive impairment[J]. JAMA Neurol, 2024, 81(8): 845-856.
doi: 10.1001/jamaneurol.2024.1612 pmid: 38857029 |
[13] | FRIZZELL T O, GLASHUTTER M, LIU C C, et al. Artificial intelligence in brain MRI analysis of Alzheimer's disease over the past 12 years: a systematic review[J]. Ageing Res Rev, 2022, 77: 101614. |
[14] | ZHU W, SUN L, HUANG J, et al. Dual attention multi-instance deep learning for Alzheimer's disease diagnosis with structural MRI[J]. IEEE Trans Med Imaging, 2021, 40(9): 2354-2366. |
[15] | JO T, KIM J, BICE P, et al. Circular-SWAT for deep learning based diagnostic classification of Alzheimer's disease: application to metabolome data[J]. EBioMedicine, 2023, 97: 104820. |
[16] | HWANG D, KIM K Y, KANG S K, et al. Improving the accuracy of simultaneously reconstructed activity and attenuation maps using deep learning[J]. J Nucl Med, 2018, 59(10): 1624-1629. |
[17] | LIAN C, LIU M, ZHANG J, et al. Hierarchical fully convolutional network for joint atrophy localization and Alzheimer's disease diagnosis using structural MRI[J]. IEEE Trans Pattern Anal Mach Intell, 2020, 42(4): 880-893. |
[18] |
TRICCO A C, LILLIE E, ZARIN W, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation[J]. Ann Intern Med, 2018, 169(7): 467-473.
doi: 10.7326/M18-0850 pmid: 30178033 |
[19] | 周英风, 顾莺, 胡雁, 等. JBI循证卫生保健中心对关于不同类型研究的质量评价工具:患病率及分析性横断面研究的质量评价[J]. 护士进修杂志, 2018, 33(3): 219-221. |
ZHOU Y F, GU Y, HU Y, et al. The Joanna Briggs Institute critical appraisal tools for use in systematic review: prevalence study and analytical cross sectional study[J]. J Nurs Train, 2018, 33(3): 219-221. | |
[20] | CIARMIELLO A, GIOVANNINI E, PASTORINO S, et al. Machine learning model to predict diagnosis of mild cognitive impairment by using radiomic and amyloid brain PET[J]. Clin Nucl Med, 2023, 48(1): 1-7. |
[21] | POURRAMEZAN FARD A, MAHOOR M H, ALSUHAIBANI M, et al. Linguistic-based mild cognitive impairment detection using informative loss[J]. Comput Biol Med, 2024, 176: 108606. |
[22] | KHATRI U, KWON G R. Diagnosis of Alzheimer's disease via optimized lightweight convolution-attention and structural MRI[J]. Comput Biol Med, 2024, 171: 108116. |
[23] | SUK H I, LEE S W, SHEN D. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis[J]. NeuroImage, 2014, 101: 569-582. |
[24] | YOON D, MYONG Y, KIM Y G, et al. Latent diffusion model-based MRI superresolution enhances mild cognitive impairment prognostication and Alzheimer's disease classification[J]. NeuroImage, 2024, 296: 120663. |
[25] |
KIM J, LEE B. Identification of Alzheimer's disease and mild cognitive impairment using multimodal sparse hierarchical extreme learning machine[J]. Hum Brain Mapp, 2018, 39(9): 3728-3741.
doi: 10.1002/hbm.24207 pmid: 29736986 |
[26] | SUK H I, WEE C Y, LEE S W, et al. State-space model with deep learning for functional dynamics estimation in resting-state fMRI[J]. NeuroImage, 2016, 129: 292-307. |
[27] | LIU M, LI F, YAN H, et al. A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease[J]. NeuroImage, 2020, 208: 116459. |
[28] | RASHID A H, GUPTA A, GUPTA J, et al. Biceph-Net: a robust and lightweight framework for the diagnosis of Alzheimer's disease using 2D-MRI scans and deep similarity learning[J]. IEEE J Biomed Health Inform, 2023, 27(3): 1205-1213. |
[29] | LEE J, KO W, KANG E, et al. A unified framework for personalized regions selection and functional relation modeling for early MCI identification[J]. NeuroImage, 2021, 236: 118048. |
[30] | ETMINANI K, SOLIMAN A, DAVIDSSON A, et al. A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer's disease, and mild cognitive impairment using brain 18F-FDG PET[J]. Eur J Nucl Med Mol Imaging, 2022, 49(2): 563-584. |
[31] | KAM T E, ZHANG H, JIAO Z, et al. Deep learning of static and dynamic brain functional networks for early MCI detection[J]. IEEE Trans Med Imaging, 2020, 39(2): 478-487. |
[32] | ZHOU T, THUNG K, ZHU X, et al. Effective feature learning and fusion of multimodality data using stage‐wise deep neural network for dementia diagnosis[J]. Hum Brain Mapp, 2018, 40(3): 1001-1016. |
[33] | GU D, LV X, SHI C, et al. A stable and scalable digital composite neurocognitive test for early dementia screening based on machine learning: model development and validation study[J]. J Med Internet Res, 2023, 25: e49147. |
[34] | GHORAANI B, BOETTCHER L N, HSSAYENI M D, et al. Detection of mild cognitive impairment and Alzheimer's disease using Dual-task Gait Assessments and machine learning[J]. Biomed Signal Process Control, 2021, 64: 102249. |
[35] | YUAN C, LINN K A, HUBBARD R A. Algorithmic fairness of machine learning models for Alzheimer disease progression[J]. JAMA Netw Open, 2023, 6(11): e2342203. |
[36] | OSMAN Y B M, LI C, HUANG W, et al. Sparse annotation learning for dense volumetric MR image segmentation with uncertainty estimation[J]. Phys Med Biol, 2023, 69(1). |
[37] | WEN J, THIBEAU-SUTRE E, DIAZ-MELO M, et al. Convolutional neural networks for classification of Alzheimer's disease: overview and reproducible evaluation[J]. Med Image Anal, 2020, 63: 101694. |
[38] | SUK H I, LEE S W, SHEN D, et al. Deep ensemble learning of sparse regression models for brain disease diagnosis[J]. Med Image Anal, 2017, 37: 101-113. |
[39] |
LIANG G, XING X, LIU L, et al. Alzheimer's disease classification using 2D convolutional neural networks[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2021, 2021: 3008-3012.
doi: 10.1109/EMBC46164.2021.9629587 pmid: 34891877 |
[1] | CHEN Junli, ZHANG Han, SHI Zhixue, LIU Ya, ZHAO Yingzhe, DONG Zhiwei, JI Lihong, LI Haiyan, CHEN Fangfang, WANG Chunping, MA Anning, JING Qi. Development of a community toolkit for identifying and managing mild cognitive impairment among older adults [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(6): 692-702. |
[2] | PAN Yi, HOU Shuanglong, WEN Xiaoni. Transcutaneous vagus nerve stimulation for executive function in adults: a scoping review [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(5): 520-528. |
[3] | XU Xiaohong, ZHONG Xiaoke, SUN Siyi, ZHANG Qi, CHENG Huaichun. Psychological benefits of art therapy for older adults with mild cognitive impairment: a systematic review [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(2): 165-171. |
[4] | WANG Xiaoxiao, QU Lu, WANG Jiaxin, ZHAO Meiping, LI Muzi, LIU Qiaoyun. Structure, content and psychometric properties of assessment tools for interoceptive function: a scoping review based on COSMIN and ICF [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(2): 172-183. |
[5] | JIANG Changhao, JIANG Xianxin, HUANG Chen, ZHONG Xiaoke. Application of artificial intelligence in diagnosis and intervention in sleep disorder for older adults: a scoping review using ICF [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(8): 922-929. |
[6] | CAO Yaping, LI Ju, HUANG Minghao, LI Zhongcheng, LANG Jian. Risk factors, health and rehabilitation intervention strategies for low back pain in adult golfers: a scoping review [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(6): 657-664. |
[7] | WEN Nana, ZHANG Xinhui, LONG Qing, WANG Yuhao, YU Qunping, ZHANG Hanchun, ZHENG Guohua. Predictive value of gait and balance on frailty in community-dwelling older adults in Shanghai, China [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(6): 731-736. |
[8] | SU Rufeng, ZHONG Xiaoke, GAO Xiaoyan, JIANG Changhao. Application of artificial intelligence in anxiety and depression among children and adolescents: a scoping review [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(5): 513-519. |
[9] | SU Zhaoyin, KANG Weihan, LIU Yatao, LÜ Yuan, Michael NERLICH. Relationship between physical activity levels and stroke risk among middle-aged and older adults in China based on CHARLS data [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(4): 449-453. |
[10] | LIU Hui, YIN Hang, HU Chenghong, JIA Shaohui, FENG Yewenzhe, HU Qingkui. Content and psychometric properties of functional measurements in patients with sarcopenia based on ICF [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(3): 273-280. |
[11] | WU Jinlong, REN Zhanbing, YI Zizhen, PENG Li. Characteristics of interbrain synchrony during interactions among individuals with autism spectrum disorder: a scoping review [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(2): 168-175. |
[12] | MA Xiaochen, LI Shufan, JIA Shuqi, LIU Cong, ZHANG Zhenyu, HAN Dongyang. Relationship of physical activity and cognitive function to sleep quality in older adults with cognitive impairment: a mediating effect of resting EEG [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(12): 1442-1451. |
[13] | HUANG Zhaoxin, TANG Letian, XIAO Xiaofei, LOU Yantao. Effect of orthopedic insoles on lower extremities function in children and adolescents with flexible flatfoot: a scoping review [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(11): 1343-1350. |
[14] | SHAO Weiting, LEI Jianghua. Effect of response interruption and redirection as a behavioral intervention on vocal stereotypy in children with autism spectrum disorder: a scoping review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 10-20. |
[15] | WANG Hangyu, GE Keke, FAN Yonghong, DU Lilu, ZOU Min, FENG Lei. Effect of active music therapy on cognitive function for older adults with cognitive impairment: a systematic review based on ICD-11 and ICF [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 36-43. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|