Chinese Journal of Rehabilitation Theory and Practice ›› 2025, Vol. 31 ›› Issue (6): 711-720.doi: 10.3969/j.issn.1006-9771.2025.06.012
Previous Articles Next Articles
ZHOU Tiantian1,2a, ZHANG Tong1,2b(), ZHANG Qi1,2a, LIANG Yanhua1,2a, ZHANG Yanqing1,2a, YUE Qing1,2a, LI Sijia1,2a
Received:
2025-03-13
Revised:
2025-05-15
Published:
2025-06-25
Online:
2025-06-16
Contact:
E-mail: CLC Number:
ZHOU Tiantian, ZHANG Tong, ZHANG Qi, LIANG Yanhua, ZHANG Yanqing, YUE Qing, LI Sijia. Effect of Lokomat robotic-assisted gait training on lower limb motor function in children with hemiplegia[J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(6): 711-720.
Table 2
Comparison of walking function between two groups"
变量 | 组别 | n | 测试 | M(QL, QU) | Z值 | P值 |
---|---|---|---|---|---|---|
SWS/m·s-1 | 对照组 | 26 | 前测 | 0.91(0.57, 1.07) | -3.205 | 0.001 |
后测 | 0.99(0.72, 1.11) | |||||
观察组 | 26 | 前测 | 0.80(0.62, 1.05) | -4.461 | < 0.001 | |
后测 | 1.08(0.90, 1.19) | |||||
治疗前差值 | 0.05(-0.36, 0.29) | -0.293 | 0.770 | |||
治疗后差值 | -0.08(-0.42, -0.10) | -2.069 | 0.039 | |||
MWS/m·s-1 | 对照组 | 26 | 前测 | 1.32(1.00, 1.46) | -2.910 | 0.004 |
后测 | 1.36(1.13, 1.50) | |||||
观察组 | 26 | 前测 | 1.22(1.07, 1.41) | -4.461 | < 0.001 | |
后测 | 1.49(1.29, 1.64) | |||||
治疗前差值 | 0.02(-0.35, 0.32) | -0.430 | 0.667 | |||
治疗后差值 | -0.22(-0.44, -0.11) | -2.069 | 0.039 | |||
6MWD/m | 对照组 | 26 | 前测 | 397.51(294.50, 415.00) | -3.975 | < 0.001 |
后测 | 404.99(339.17, 432.27) | |||||
观察组 | 26 | 前测 | 358.66(298.79, 410.00) | -4.457 | < 0.001 | |
后测 | 442.56(366.24, 479.28) | |||||
治疗前差值 | 5.33(-101.29, 110.04) | -0.805 | 0.421 | |||
治疗后差值 | -19.56(-119.93, 37.77) | -2.224 | 0.026 |
[1] | LIU W, HU Y, LI J, et al. Effect of virtual reality on balance function in children with cerebral palsy: a systematic review and meta-analysis[J]. Front Public Health, 2022, 10: 865474. |
[2] |
MUSTAFAOGLU R, ERHAN B, YELDAN I, et al. Does robot-assisted gait training improve mobility, activities of daily living and quality of life in stroke? A single-blinded, randomized controlled trial[J]. Acta Neurologica Belgica, 2020, 120(2): 335-344.
doi: 10.1007/s13760-020-01276-8 pmid: 31989505 |
[3] | 张佩佩, CAO Ning, 陈真, 等. 下肢康复机器人在早期脑卒中患者步态康复中的应用进展[J]. 中国临床医学, 2022, 29(3): 493-498. |
ZHANG P P, CAO N, CHEN Z, et al. Application progress of robot-assisted gait training in early phase of post-stroke patients[J]. Chin J Clin Med, 2022, 29(3): 493-498. | |
[4] |
PÉREZ-DE LA CRUZ S, CIMOLIN V, GIL-AGUDO A. Spinal cord injury in pediatric age in Spain. Reality of a national reference center[J]. Child Nerv Syst, 2015, 31(6): 917-921.
doi: 10.1007/s00381-015-2681-y pmid: 25837575 |
[5] | 金丽丽, 秦莉芝, 冯汝恩. 高频rTMS联合任务导向性训练在脑卒中后偏瘫患者中的效果[J]. 中国卫生标准管理, 2024, 15(9): 115-118. |
JIN L L, QIN L Z, FENG R E. Effect of High-frequency rTMS combined with task-directed training in patients after stroke with hemiplegia[J]. Chin Health Standard Manag, 2024, 15(9): 115-118. | |
[6] | 吕延宝, 张璐, 单玲, 等. 任务导向性训练对痉挛性低龄脑瘫儿童下肢协调能力及平衡的影响研究[J]. 中国妇幼保健, 2020, 35(2): 265-267. |
LÜ Y B, ZHANG L, SHAN L, et al. Study on the effect of task-oriented training on lower limb coordination and balance in young children with spastic cerebral palsy[J]. Mater Child Health Care Chin, 2020, 35(2): 265-267. | |
[7] |
CAPECCI M, POURNAJAF S, GALAFATE D, et al. Clinical effects of robot-assisted gait training and treadmill training for Parkinson's disease. A randomized controlled trial[J]. Ann Phys Rehabil Med, 2019, 62(5): 303-312.
doi: S1877-0657(19)30107-1 pmid: 31377382 |
[8] | CORTÉS-PÉREZ I, GONZÁLEZ-GONZÁLEZ N, PEINADO-RUBIA A B, et al. Efficacy of robot-assisted gait therapy compared to conventional therapy or treadmill training in children with cerebral palsy: a systematic review with meta-analysis[J]. Sensors (Basel), 2022, 22(24): 9910. |
[9] | AURICH-SCHULER T, GROB F, VAN HEDEL H J A, et al. Can Lokomat therapy with children and adolescents be improved? An adaptive clinical pilot trial comparing Guidance force, Path control, and FreeD[J]. J Neuroeng Rehabil, 2017, 14(1): 76. |
[10] | 包译, 朵强, 张源芮, 等. 下肢康复机器人对缺血性脑卒中恢复期患者步行功能的影响[J]. 中国康复医学杂志, 2022, 37(8): 1079-1083. |
BAO Y, DUO Q, ZHANG Y R, et al. The effect of lower limb rehabilitation robots on walking function in patients with ischemic stroke during the recovery phase[J]. Chin J Rehabil Med, 2022, 37(8): 1079-1083. | |
[11] | KIM H Y, SHIN J H, YANG S P, et al. Robot-assisted gait training for balance and lower extremity function in patients with infratentorial stroke: a single-blinded randomized controlled trial[J]. J Neuroeng Rehabil, 2019, 16(1): 1-12. |
[12] | CHO J E, YOO J S, KIM K E, et al. Systematic review of appropriate robotic intervention for gait function in subacute stroke patients[J]. Biomed Res Int, 2018, 2018: 4085298. |
[13] | CONNER B C, SCHWARTZ M H, LERNER Z F. Pilot evaluation of changes in motor control after wearable robotic resistance training in children with cerebral palsy[J]. J Biomech, 2021, 126: 110601. |
[14] | 熊华春, 陈精慧, 王军, 等. 下肢康复机器人训练对痉挛型脑瘫患儿粗大运动功能及平衡功能的影响[J]. 郑州大学学报(医学版), 2021, 56(3): 370-375. |
XIONG H C, CHEN J H, WANG J, et al. Effects of robot assisted gait training on the gross motor function and balance function of children with spastic cerebral palsy[J]. J Zhengzhou Univ (Med Sci), 2021, 56(3): 370-375. | |
[15] | 胡晓诗, 岳青, 刘前进, 等. 平衡垫训练对偏瘫儿童步行能力的影响[J]. 中国康复, 2023, 38(3): 163-166. |
HU X S, YUE Q, LIU Q J, et al. Effect of balance pad training on walking ability of hemiplegic children[J]. Chin J Rehabil, 2023, 38(3): 163-166. | |
[16] | 熊华春, 袁素雅, 肖宁, 等. 下肢康复机器人辅助步态训练联合任务导向性训练对不随意运动型脑瘫患儿步行能力的影响[J]. 中华物理医学与康复杂志, 2024, 46(9): 806-811. |
XIONG H C, YUAN S Y, XIAO N, et al. Combining robot-assisted gait training with task-oriented training can improve the walking ability of children with dyskinetic cerebral palsy[J]. Chin J Phys Med Rehabil, 2024, 46(9): 806-811. | |
[17] |
马婷婷, 张皓. 机器人辅助步态训练对痉挛型脑性瘫痪患儿运动和步行功能的效果[J]. 中国康复理论与实践, 2021, 27(11): 1260-1265.
doi: 10.3969/j.issn.1006-9771.2021.11.004 |
MA T T, ZHANG H. Effect of robotic-assisted gait training on motor and walking for children with spastic cerebral palsy[J]. Chin J Rehabil Theory Pract, 2021, 27(11): 1260-1265. | |
[18] |
胡晓诗, 张琦, 岳青, 等. 矫形弹力绷带对痉挛性偏瘫脑性瘫痪患儿步态对称性和步行能力的效果[J]. 中国康复理论与实践, 2023, 29(9): 1083-1089.
doi: 10.3969/j.issn.1006-9771.2023.09.012 |
HU X S, ZHANG Q, YUE Q, et al. Effect of orthopedic elastic bandages on gait symmetry and walking ability in children with spastic hemiplegic cerebral palsy[J]. Chin J Rehabil Theory Pract, 2023, 29(9): 1083-1089. | |
[19] | 马圣楠, 柯竟悦, 董洪铭, 等. 前交叉韧带重建后静态站立及步行时的平衡和步态特征[J]. 中国组织工程研究, 2023, 27(36): 5784-5789. |
MA S N, KE J Y, DONG H M, et al. Balance and gait characteristics of static standing and walking after anterior cruciate ligament reconstruction[J]. Chin J Tissue Eng Res, 2023, 27(36): 5784-5789. | |
[20] |
YOU Y Y, CHUNG S H, LEE H J. Impact of the difference in the plantar flexor strength of the ankle joint in the affected side among hemiplegic patients on the plantar pressure and walking asymmetry[J]. J Phys Ther Sci, 2016, 28(11): 3015-3019.
pmid: 27942112 |
[21] | 林英杰, 吴建宁, 林丽辉. 人体步态对称性量化评价方法研究进展[J]. 中国生物医学工程学报, 2019, 38(2): 222-232. |
LIN Y J, WU J N, LIN L H. Research progress of the quantitative evaluation methods in human gait symmetry[J]. Chin J Biomed Eng, 2019, 38(2): 222-232. | |
[22] | 王亚囡, 刘惠林, 杜雪晶, 等. 水中平板步行训练对恢复期脑卒中偏瘫患者姿势控制及步态对称性的疗效[J]. 中国康复, 2022, 37(3): 140-144. |
WANG Y N, LIU H L, DU X J, et al. Efficacy of aquatic treadmill training on postural control and gait symmetry in subacute stroke patients[J]. Chin J Rehabil, 2022, 37(3): 140-144. | |
[23] | 程婷, 刘芸, 程昱, 等. 减重活动平板联合PNF技术在偏瘫儿童步态训练中的应用效果及对儿童平衡功能的影响[J]. 中国妇幼保健, 2022, 37(12): 2186-2189. |
CHENG T, LIU Y, CHENG Y, et al. The application effect of body weight-supported treadmill training combined with PNF techniques in gait training for hemiplegic children and its impact on balance function[J]. Mater Child Health Care Chin, 2022, 37(12): 2186-2189. | |
[24] | 鲍丽芳, 陈玉琪, 徐建秀. 常规康复训练联合运动想象疗法对脑卒中偏瘫病人步行能力、平衡能力及生活质量的影响[J]. 全科护理, 2024, 22(13): 2493-2496. |
BAO L F, CHEN Y Q, XU J X. The impact of conventional rehabilitation training combined with motor imagery therapy on walking ability, balance ability, and quality of life in hemiplegic stroke patients[J]. Chin Gener Pract Nurs, 2024, 22(13): 2493-2496. | |
[25] | 路芳, 朱琳, 宋为群. 下肢康复机器人联合虚拟现实技术对脑卒中患者下肢功能的影响[J]. 中国康复医学杂志, 2018, 33(11): 1301-1306. |
LU F, ZHU L, SONG W Q. Effects of lower limb rehabilitation robot with virtual reality on lower limb function in stroke patients[J]. Chin J Rehabil Med, 2018, 33(11): 1301-1306. | |
[26] | BARONCHELLI F, ZUCCHELLA C, SERRAO M, et al. The effect of robotic assisted gait training with Lokomat® on balance control after stroke: systematic review and meta-analysis[J]. Front Neurol, 2021, 12: 661815. |
[27] | WALLARD L, DIETRICH G, KERLIRZIN Y, et al. Robotic-assisted gait training improves walking abilities in diplegic children with cerebral palsy[J]. Eur J Paediatr Neurol, 2017, 21(3): 557-564. |
[28] | 冯展鹏, 谭思洁, 李辉. 6 min步行试验在儿童青少年心肺耐力评价中的应用[J]. 中国学校卫生, 2021, 42(7): 1116-1120. |
FENG Z P, TAN S J, LI H. Application of six-minute walk test in the evaluation of children and adolescents' cardiorespiratory endurance[J]. Chin J Sch Health, 2021, 42(7): 1116-1120. | |
[29] | 刘丽玲, 倪朝民, 岳童, 等. 脑卒中患者步行时足底压力中心不对称性及其与步速的相关性[J]. 中国康复医学杂志, 2017, 32(4): 409-413. |
LIU L L, NI C M, YUE T, et al. Center of foot pressure asymmetry and its correlation with walk velocity among hemiplegic stroke survivors[J]. Chin J Rehabil Med, 2017, 32(4): 409-413. | |
[30] | ARAS B, YAŞAR E, KESIKBURUN S, et al. Comparison of the effectiveness of partial body weight-supported treadmill exercises, robotic-assisted treadmill exercises, and anti-gravity treadmill exercises in spastic cerebral palsy[J]. Turk J Phys Med Rehabil, 2019, 65(4): 361-370. |
[31] |
TAKAKI K, KUSUMOTO Y. The relationship between the Physical Cost Index and knee extensor strength in children with hemiplegic cerebral palsy[J]. J Phys Ther Sci, 2017, 29(10): 1784-1787.
doi: 10.1589/jpts.29.1784 pmid: 29133972 |
[32] |
SANNYASI G, OJHA R, PRAKASH N B, et al. Gait characteristics following stroke: a prospective crossover study to compare ankle-foot orthosis with functional electrical stimulation[J]. Neurology India, 2022, 70(5): 1830-1835.
doi: 10.4103/0028-3886.359240 pmid: 36352574 |
[33] | GRIMMITT A B, WHELAN M E, MARTINI D N, et al. Walking with increased step length variability increases the metabolic cost of walking in young adults[J]. J Exp Biol, 2025, 228(8): jeb250126. |
[34] | KARAMI H, KARAMI K, ABDULLATIF KHAFAIE M, et al. The physiological cost index and some kinematic parameters of walking and jogging in blind and sighted students[J]. Iran J Med Sci, 2020, 45(1): 16-22. |
[35] | SHIRAI Y, ITO T, ITO Y, et al. Evaluation of muscle oxygen dynamics in children's gait and its relationship with the Physiological Cost Index[J]. Healthcare, 2023, 11(2): 221. |
[36] | HAN Y G, YUN C K. Effectiveness of treadmill training on gait function in children with cerebral palsy: meta-analysis[J]. J Exerc Rehabil, 16(1): 10-19. |
[37] | ALINGH J F, FLEERKOTTE B M, GROEN B E, et al. Effect of assist-as-needed robotic gait training on the gait pattern post stroke: a randomized controlled trial[J]. J Neuroeng Rehabil, 2021, 18(1): 26. |
[38] | 魏鑫鑫, 吕智海. 机器人辅助步行训练对脑性瘫痪患儿影响的研究进展[J]. 中国中西医结合儿科学, 2024, 16(2): 107-113. |
WEI X X, LÜ Z H. Advances in the study of the effects of robot-assisted walking training on children with cerebral palsy[J]. Chin Pediatr Integr Trad Western Med, 2024, 16(2): 107-113. | |
[39] |
YAZICI M, LIVANELIOĞLU A, GÜCÜYENER K, et al. Effects of robotic rehabilitation on walking and balance in pediatric patients with hemiparetic cerebral palsy[J]. Gait Posture, 2019, 70: 397-402.
doi: S0966-6362(18)31621-7 pmid: 30974395 |
[40] |
王一吉, 周红俊, 何泽佳, 等. 不完全性脊髓损伤患者运动功能对称性与步态对称性的关系[J]. 中国康复理论与实践, 2023, 29(6): 639-645.
doi: 10.3969/j.issn.1006-9771.2023.06.003 |
WANG Y J, ZHOU H J, HE Z J, et al. Relationship between symmetry of lower limb function and gait symmetry in patients with incomplete spinal cord injury[J]. Chin J Rehabil Theory Pract, 2023, 29(6): 639-645. | |
[41] | ZHANG H, LI X, GONG Y, et al. Three-dimensional gait analysis and sEMG measures for robotic-assisted gait training in subacute stroke: a randomized controlled trial[J]. Biomed Res Int, 2023, 2023: 7563802. |
[42] | 李新科, 吕晓, 龙建军, 等. 下肢外骨骼康复机器人对偏瘫患者步态时空参数不对称性的影响[J]. 现代实用医学, 2021, 33(7): 879-880, 981. |
LI X K, LÜ X, LONG J J, et al. The effect of lower limb exoskeleton rehabilitation robots on the asymmetry of spatiotemporal gait parameters in hemiplegic patients[J]. Mod Pract Med, 2021, 33(7): 879-880, 981. | |
[43] |
马圣楠, 柯竟悦, 董洪铭, 等. 核心稳定性训练干预前交叉韧带重建术后动态平衡及表面肌电的效果[J]. 中国康复理论与实践, 2023, 29(8): 882-889.
doi: 10.3969/j.issn.1006-9771.2023.08.003 |
MA S N, KE J Y, DONG H M, et al. Effect of core stability training on dynamic balance and surface electromyography after anterior cruciate ligament reconstruction[J]. Chin J Rehabil Theory Pract, 2023, 29(8): 882-889. | |
[44] | 尹傲冉, 倪朝民. 脑卒中患者不对称步态与平衡控制的研究进展[J]. 中国康复医学杂志, 2014, 29(9): 897-900. |
YIN A R, NI C M. Research progress on asymmetric gait and balance control in stroke patients[J]. Chin J Rehabil Med, 2014, 29(9): 897-900. | |
[45] | 何海峰, 洪卫军, 周慧青, 等. 下肢康复机器人对脑梗死后偏瘫患者异常步态及下肢功能的改善作用[J]. 医疗装备, 2023, 36(4): 78-80. |
HE H F, HONG W J, ZHOU H Q, et al. The improvement effect of lower limb rehabilitation robots on abnormal gait and lower limb function in hemiplegic patients after cerebral infarction[J]. Med Equip, 2023, 36(4): 78-80. | |
[46] | 雷德宝, 吴校林, 朱锐, 等. 下肢机器人训练对脑卒中偏瘫患者三维步态分析系统测试结果的影响[J]. 临床和实验医学杂志, 2019, 18(12): 1323-1327. |
LEI D B, WU X L, ZHU R, et al. The influence of lower limb robot training on the results of three-dimensional gait analysis system for stroke patients with hemiplegia[J]. J Clin Exper Med, 2019, 18(12): 1323-1327. | |
[47] | 支亮, 王玉龙, 张清芳, 等. 脑卒中患者偏瘫步态中的推进力缺陷[J]. 中国组织工程研究, 2024, 28(35): 5709-5715. |
ZHI L, WANG Y L, ZHANG Q F, et al. Propulsion deficits in hemiplegic gait of stroke patients[J]. Chin J Tissue Eng Res, 2024, 28(35): 5709-5715. | |
[48] | KHAMIS S, HERMAN T, KRIMUS S, et al. Is functional electrical stimulation an alternative for orthotics in patients with cerebral palsy? A literature review[J]. Eur J Paediatr Neurol, 2018, 22(1): 7-16. |
[1] | SHAO Xueyun. Physical activity, functioning and psycho-behavioral health in obese children: policy framework and health behavior intervention model [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(6): 642-649. |
[2] | WU Dang, ZHANG Qing, WU Jiaming, JIA Wenrong, WU Aihong, WU Jian. Support system for children with special needs participating in physical activity in an inclusive education context [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(6): 650-657. |
[3] | LIU Xuan, GAO Ling, CHU Fengming, CHEN Jie, ZHANG Ming. Effect of brain-computer interface combined with upper limb rehabilitation robot on upper limb function of stroke patients [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(6): 703-710. |
[4] | FENG Haiyang. Reliability and validity of foot function index in flatfeet of children and adolescents [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(6): 729-735. |
[5] | SHI Bin, XU Ning, ZHOU Guangxue. Application of mirror therapy in motor function rehabilitation for stroke: a bibliometric analysis from 2005 to 2024 [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(5): 561-572. |
[6] | ZHOU Bo, SHE Wanbin, XIANG Songbai. Application of artificial intelligence in diagnosis and intervention for children with autism spectrum disorder: a bibliometric analysis [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(5): 573-580. |
[7] | YI Ling, ZHOU Jing, CHEN Xuefen, CHEN Chuanfan, CHEN Keyi, DONG Huifan. Characteristics and intervention of speech function impairments and communication limitation in children with intellectual disabilities based on ICF [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(4): 398-405. |
[8] | ZHANG Yong, CAI Zeng, XU Fengping, LIU Dan, CHANG Hongjuan. Effect of music therapy on children with autism spectrum disorder: a meta-analysis [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(4): 423-430. |
[9] | LI Xinlei, WEI Wei, SONG Jian, ZHAO Yuqing, KONG Weicheng, CAI Jiayu, SHI Haoran, XUE Xiehua. Application of resting-state electroencephalography in assessment of upper limb motor function of stroke patients [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(4): 448-457. |
[10] | SU Panpan, YE Peng, LU Qian, HE Chuan, LU Xiao. Effect of visual deprivation training combined with proprioceptive training on balance in hemiplegic patients after stroke [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(3): 254-263. |
[11] | DUAN Guanting, XIAO Xue, HOU Huisheng, JIANG Yunqiao, LIU Yuge, SHI Wenxia. Relationship between physical activity and mental health in children with autism spectrum disorder: the mediating role of social response [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(2): 150-157. |
[12] | XIANG Songbai, ZHOU Wenhui, WANG Chonggao. Application of robots in rehabilitation of children with autism spectrum disorder from 2004 to 2024: a bibliometrics analysis [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(2): 158-164. |
[13] | YANG Wenrui, CUI Sidong, ZENG Li. Effect of virtual and augmented reality on cognition, emotion and adaptive behavior in children and adolescents with autism spectrum disorder: a systematic review [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(9): 1026-1033. |
[14] | LUO Hong, XU Li. Effect of repetitive transcranial magnetic stimulation combined with repetitive peripheral magnetic stimulation on upper extremities motor function in patients with cerebral hemorrhage: a randomized controlled trial based on resting state-functional magenetic resonance imaging [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(9): 1060-1068. |
[15] | WANG Min, FANG Lantian, HUANG Chenyi. Effect of modified graded motor imagery on upper limb motor function for stroke patients: a randomized controlled trial [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(9): 1069-1073. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|