[1] |
MIYAKE T, YAMAMOTO S, HOSONO S, et al. Gait phase detection based on muscle deformation with static standing-based calibration[J]. Sensors, 2021, 21(4): 1081.
doi: 10.3390/s21041081
|
[2] |
PINHEY S R, MURATA H, HISANO G, et al. Effects of walking speed and prosthetic knee control type on external mechanical work in transfemoral prosthesis users[J]. J Biomech, 2022, 134: 110984.
doi: 10.1016/j.jbiomech.2022.110984
|
[3] |
ALVES A, ANDRIETTA L T, LOPES R Z, et al. Integrating audio signal processing and deep learning algorithms for gait pattern classification in brazilian gaited horses[J]. Front Genet, 2021, 2: 681557.
|
[4] |
罗鸿, 刘方, 李顺华, 等. 步态分析应用在前交叉韧带损伤诊断中的意义[J]. 中国组织工程研究, 2019, 23(31): 4969-4973.
|
|
LUO H, LIU F, LI S H, et al. Significance of gait analysis in the diagnosis of anterior cruciate ligament injury[J]. Chin J Tissue Engineer Res, 2019, 23(31): 4969-4973.
|
[5] |
APOORVA G, KEE M, YUSUF O, et al. Extraction and analysis of respiratory motion using wearable inertial sensor system during trunk motion[J]. Sensors, 2017, 17(12): 1-25.
doi: 10.3390/s17010001
|
[6] |
黄悦, 余洪俊, 谭小丹, 等. 运用步态分析系统评估下肢康复机器人对脑卒中偏瘫患者步态的临床疗效[J]. 现代医药卫生, 2022, 38(24): 4190-4194.
|
|
HUANG Y, YU H J, TAN X D, et al. Evaluation of the clinical efficacy of lower limb rehabilitation robot on gait of stroke patients with hemiplegia by gait analysis system[J]. J Modern Med Health, 2022, 38(24): 4190-4194.
|
[7] |
EIZENTALS P, KATASHEV A, OKSS A. Gait partitioning with smart socks system[C]. Society Integration Education Proceedings of the International Scientific Conference, 2019: 134.
|
[8] |
DONG D B, MA C, WANG M, et al. A low-cost framework for the recognition of human motion gait phases and patterns based on multi-source perception fusion[J]. Eng Appl Artif Intell, 2023, 120: 105886.
doi: 10.1016/j.engappai.2023.105886
|
[9] |
FEI G, LIU G, LIANG F, et al. IMU-based locomotion mode identification for transtibial prostheses, orthoses, and exoskeletons[J]. IEEE Trans Neural Syst Rehabil Eng, 2020, 28(6): 1334-1343.
doi: 10.1109/TNSRE.7333
|
[10] |
WEI F, CRECHIOLO A, HAUT R C. Prediction of ground reaction forces in level and incline/decline walking from a multistage analysis of plantar pressure data[J]. J Biomech, 2018, 6(8): 698-707.
|
[11] |
喻洪流, 张意彬, 商怀超, 等.可调仿真膝关节步态数据采集系统及其方法:2018102718039[P]. 2020-10-09.
|
[12] |
张意彬, 吕杰, 喻洪流. 一种智能膝关节假肢及其控制算法研究[J]. 现代仪器与医疗, 2022, 28(6): 19-27.
|
|
ZHANG Y B, LÜ J, YU H L. Research on an intelligent above-knee prosthesis and its control algorithm[J]. Modern Instrum Med Treat, 2022, 28(6): 19-27.
|
[13] |
李根. 基于MATLAB的模糊逻辑控制系统设计[J]. 机电信息, 2020(6): 72-73.
|
|
LI G. Design of fuzzy logic control system based on MATLAB[J]. Mech Electr Inform, 2020(6): 72-73.
|
[14] |
SAVELBERG H H, DE LANGE A L. Assessment of the horizontal, fore-aft component of the ground reaction force from insole pressure patterns by using artificial neural networks[J]. Clin Biomech, 1999, 14(8): 585-592.
doi: 10.1016/S0268-0033(99)00036-4
|
[15] |
MANGOLIKA B, PAT O, MARK S, et al. Use of artificial neural networks in the design of adaptive fuzzy logic controllers in the manufacturing of prosthetic knees[J]. Procedia Computer Sci, 2023, 218: 2820-2829.
doi: 10.1016/j.procs.2023.01.253
|
[16] |
张意彬, 李剑峰, 喻洪流. 一种智能膝关节假肢及其步态对称性评价[J]. 中国康复理论与实践, 2023, 29(4): 402-407.
doi: 10.3969/j.issn.1006-9771.2023.04.005
|
|
ZHANG Y B, LI J F, YU H L. A microprocessor-controlled prosthetic knee and its gait symmetry assessment[J]. Chin J Rehabil Theory Pract, 2023, 29(4): 402-407.
|