Chinese Journal of Rehabilitation Theory and Practice ›› 2025, Vol. 31 ›› Issue (6): 703-710.doi: 10.3969/j.issn.1006-9771.2025.06.011
Previous Articles Next Articles
LIU Xuan1,2, GAO Ling1,2, CHU Fengming1,2, CHEN Jie1,2, ZHANG Ming1,2,3()
Received:
2025-01-20
Revised:
2025-04-08
Published:
2025-06-25
Online:
2025-06-16
Contact:
E-mail: Supported by:
CLC Number:
LIU Xuan, GAO Ling, CHU Fengming, CHEN Jie, ZHANG Ming. Effect of brain-computer interface combined with upper limb rehabilitation robot on upper limb function of stroke patients[J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(6): 703-710.
Table 1
Comparison of baseline data among three groups"
组别 | n | 性别(男/女)/n | 年龄/岁 | 病程/d | 病变性质(缺血/出血)/n | 偏瘫侧(左/右)/n |
---|---|---|---|---|---|---|
脑机接口组 | 15 | 5/10 | 56.13±10.83 | 52.80±13.17 | 4/11 | 7/8 |
机器人组 | 15 | 4/11 | 57.00±9.59 | 61.33±22.28 | 2/13 | 7/8 |
联合组 | 15 | 5/10 | 61.60±6.85 | 64.80±19.48 | 5/10 | 6/9 |
χ2/F值 | 0.211 | 1.516 | 1.635 | 1.780 | 0.180 | |
P值 | 0.900 | 0.231 | 0.207 | 0.411 | 0.914 |
Table 2
Descriptive statistical results of various indicators pre- and post-treatment in each group"
变量 | 组别 | 治疗前 | 治疗后 | ||
---|---|---|---|---|---|
均值 | 标准差 | 均值 | 标准差 | ||
FMA-UE | 脑机接口组 | 28.00 | 3.85 | 33.80 | 3.82 |
机器人组 | 27.73 | 5.50 | 33.40 | 5.60 | |
联合组 | 25.87 | 6.55 | 38.93 | 8.56 | |
ARAT | 脑机接口组 | 10.20 | 4.46 | 16.07 | 4.17 |
机器人组 | 11.67 | 5.86 | 15.93 | 5.48 | |
联合组 | 12.13 | 5.25 | 22.67 | 5.43 | |
MBI | 脑机接口组 | 54.40 | 10.95 | 60.27 | 10.26 |
机器人组 | 52.53 | 9.53 | 59.80 | 9.14 | |
联合组 | 56.27 | 6.95 | 67.27 | 7.08 | |
DAR | 脑机接口组 | 3.22 | 1.17 | 2.51 | 0.99 |
机器人组 | 3.12 | 0.77 | 2.57 | 0.80 | |
联合组 | 3.30 | 1.33 | 1.71 | 0.93 |
Table 3
Repeated measures ANOVA results for each indicator"
变量 | 平方和 | 自由度 | 均方 | F值 | P值 | |
---|---|---|---|---|---|---|
FMA-UE | 组内 | 1504.711 | 1 | 1504.711 | 342.846 | < 0.001 |
组间 | 57.222 | 2 | 28.611 | 0.443 | 0.645 | |
组内×组间 | 268.956 | 2 | 134.478 | 30.641 | < 0.001 | |
ARAT | 组内 | 953.878 | 1 | 953.878 | 336.851 | < 0.001 |
组间 | 183.267 | 2 | 91.633 | 1.683 | 0.198 | |
组内×组间 | 44.689 | 2 | 22.344 | 7.891 | < 0.001 | |
MBI | 组内 | 1456.044 | 1 | 1456.044 | 662.316 | < 0.001 |
组间 | 523.756 | 2 | 261.878 | 1.599 | 0.214 | |
组内×组间 | 105.622 | 2 | 52.811 | 24.022 | < 0.001 | |
DAR | 组内 | 20.268 | 1 | 20.268 | 101.870 | < 0.001 |
组间 | 2.466 | 2 | 1.233 | 0.657 | 0.523 | |
组内×组间 | 4.756 | 2 | 2.378 | 11.953 | < 0.001 |
Table 4
Difference test results before and after treatment in each group"
变量 | 组别 | 治疗前后平均值差 | 平均值差标准差 | P值 | 95%CI | |
---|---|---|---|---|---|---|
下限 | 上限 | |||||
FMA-UE | 脑机接口组 | -5.800 | 1.821 | < 0.001 | -7.344 | -4.256 |
机器人组 | -5.667 | 1.633 | < 0.001 | -7.210 | -4.123 | |
联合组 | -13.067 | 4.511 | < 0.001 | -14.610 | -11.523 | |
ARAT | 脑机接口组 | -5.867 | 1.995 | < 0.001 | -7.107 | -4.627 |
机器人组 | -5.200 | 1.373 | < 0.001 | -6.440 | -3.960 | |
联合组 | -8.467 | 3.335 | < 0.001 | -9.707 | -7.227 | |
MBI | 脑机接口组 | -5.867 | 1.457 | < 0.001 | -6.959 | -4.774 |
机器人组 | -7.267 | 1.831 | < 0.001 | -8.359 | -6.174 | |
联合组 | -11.000 | 2.777 | < 0.001 | -12.093 | -9.907 | |
DAR | 脑机接口组 | 0.712 | 0.450 | < 0.001 | 0.383 | 1.041 |
机器人组 | 0.543 | 0.249 | 0.002 | 0.215 | 0.872 | |
联合组 | 1.592 | 0.964 | < 0.001 | 1.263 | 1.921 |
Table 5
Pre Hoc LSD difference test results for each indicator"
变量 | 组别 | 组别 | 均值差 | P值 | 95%CI | |
---|---|---|---|---|---|---|
下限 | 上限 | |||||
FMA-UE | 脑机接口组 | 机器人组 | 0.267 | 0.893 | -3.722 | 4.256 |
脑机接口组 | 联合组 | 2.133 | 0.287 | -1.856 | 6.122 | |
机器人组 | 联合组 | 1.867 | 0.350 | -2.122 | 5.856 | |
ARAT | 脑机接口组 | 机器人组 | -0.800 | 0.695 | -4.887 | 3.287 |
脑机接口组 | 联合组 | -1.933 | 0.345 | -6.021 | 2.154 | |
机器人组 | 联合组 | -1.133 | 0.579 | -5.221 | 2.954 | |
MBI | 脑机接口组 | 机器人组 | 1.867 | 0.585 | -4.981 | 8.714 |
脑机接口组 | 联合组 | -1.867 | 0.585 | -8.714 | 4.981 | |
机器人组 | 联合组 | -3.733 | 0.277 | -10.581 | 3.114 | |
DAR | 脑机接口组 | 机器人组 | 0.109 | 0.791 | -0.714 | 0.931 |
脑机接口组 | 联合组 | -0.077 | 0.850 | -0.900 | 0.745 | |
机器人组 | 联合组 | -0.186 | 0.650 | -1.009 | 0.637 |
Table 6
Post Hoc LSD difference test results for each indicator"
变量 | 组别 | 组别 | 均值差 | P值 | 95%CI | |
---|---|---|---|---|---|---|
下限 | 上限 | |||||
FMA-UE | 脑机接口组 | 机器人组 | 0.400 | 0.863 | -4.245 | 5.045 |
脑机接口组 | 联合组 | -5.133 | 0.031 | -9.779 | -0.488 | |
机器人组 | 联合组 | -5.533 | 0.021 | -10.179 | -0.888 | |
ARAT | 脑机接口组 | 机器人组 | -0.133 | 0.944 | -3.927 | 3.660 |
脑机接口组 | 联合组 | -4.533 | 0.020 | -8.327 | -0.740 | |
机器人组 | 联合组 | -4.400 | 0.024 | -8.193 | -0.607 | |
MBI | 脑机接口组 | 机器人组 | 0.467 | 0.887 | -6.111 | 7.044 |
脑机接口组 | 联合组 | -7.000 | 0.038 | -13.578 | -0.422 | |
机器人组 | 联合组 | -7.467 | 0.027 | -14.044 | -0.889 | |
DAR | 脑机接口组 | 机器人组 | -0.060 | 0.858 | -0.731 | 0.611 |
脑机接口组 | 联合组 | 0.803 | 0.020 | 0.132 | 1.473 | |
机器人组 | 联合组 | 0.863 | 0.013 | 0.192 | 1.533 |
[1] | LI D, CHENG A, ZHANG Z, et al. Effects of low-frequency repetitive transcranial magnetic stimulation combined with cerebellar continuous theta burst stimulation on spasticity and limb dyskinesia in patients with stroke[J]. BMC Neurol, 2021, 21(1): 369. |
[2] |
FEIGIN V L, STARK B A, JOHNSON C O, et al. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet Neurol, 2021, 20(10): 795-820.
doi: 10.1016/S1474-4422(21)00252-0 pmid: 34487721 |
[3] | TU W J, WANG L D, Special Writing Group of China Stroke Surveillance Report. China stroke surveillance report 2021[J]. Mil Med Res, 2023, 10(1): 33. |
[4] | OWOLABI M O, THRIFT A G, MAHAL A, et al. Primary stroke prevention worldwide: translating evidence into action[J]. Lancet Public Health, 2022, 7(1): e74-e85. |
[5] |
LANGHORNE P, COUPAR F, POLLOCK A. Motor recovery after stroke: a systematic review[J]. Lancet Neurol, 2009, 8(8): 741-754.
doi: 10.1016/S1474-4422(09)70150-4 pmid: 19608100 |
[6] | ZHANG R, WANG C, HE S, et al. An adaptive brain-computer interface to enhance motor recovery after stroke[J]. IEEE Trans Neural Syst Rehabil Eng, 2023, 31: 2268-2278. |
[7] |
GAO X, WANG Y, CHEN X, et al. Interface, interaction, and intelligence in generalized brain-computer interfaces[J]. Trends Cogn Sci, 2021, 25(8): 671-684.
doi: 10.1016/j.tics.2021.04.003 pmid: 34116918 |
[8] | CHAI X, CAO T, HE Q, et al. Brain-computer interface digital prescription for neurological disorders[J]. CNS Neurosci Ther, 2024, 30(2): e14615. |
[9] | EVERARD G, DECLERCK L, DETREMBLEUR C, et al. New technologies promoting active upper limb rehabilitation after stroke: an overview and network meta-analysis[J]. Eur J Phys Rehabil Med, 2022, 58(4): 530-548. |
[10] | DEVITTORI G, DINACCI D, ROMITI D, et al. Unsupervised robot-assisted rehabilitation after stroke: feasibility, effect on therapy dose, and user experience[J]. J Neuroeng Rehabil, 2024, 21(1): 52. |
[11] | TERRANOVA T T, SIMIS M, SANTOS A C A, et al. Robot-assisted therapy and constraint-induced movement therapy for motor recovery in stroke: results from a randomized clinical trial[J]. Front Neurorobot, 2021, 15: 684019. |
[12] | YEH I L, HOLST-WOLF J, ELANGOVAN N, et al. Effects of a robot-aided somatosensory training on proprioception and motor function in stroke survivors[J]. J Neuroeng Rehabil, 2021, 18(1): 77. |
[13] |
COSCIA M, WESSEL M J, CHAUDARY U, et al. Neurotechnology-aided interventions for upper limb motor rehabilitation in severe chronic stroke[J]. Brain, 2019, 142(8): 2182-2197.
doi: 10.1093/brain/awz181 pmid: 31257411 |
[14] | 王路遥, 卫倩锐, 张荣, 等. 脑卒中后康复机器人联合多种干预方式的研究进展[J]. 中华物理医学与康复杂志, 2023, 45(6): 568-571. |
[15] | JIA J. Exploration on neurobiological mechanisms of the central-peripheral-central closed-loop rehabilitation[J]. Front Cell Neurosci, 2022, 16: 982881. |
[16] | BANIQUED P D E, STANYER E C, AWAIS M, et al. Brain-computer interface robotics for hand rehabilitation after stroke: a systematic review[J]. J Neuroeng Rehabil, 2021, 18(1): 15. |
[17] | 中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国各类主要脑血管病诊断要点2019[J]. 中华神经科杂志, 2019, 52(9): 710-715. |
Chinese Society of Neurology, Chinese Stroke Society. Main diagnostic points of cerebrovascular diseases in China, 2019[J]. Chin J Neurol, 2019, 52(9): 710-715. | |
[18] | LI C, JIANG M, FANG Z, et al. Current evidence of synaptic dysfunction after stroke: cellular and molecular mechanisms[J]. CNS Neurosci Ther, 2024, 30(5): e14744. |
[19] | GNANAPRAKASAM A, KARTHIKBABU S, RAVISHANKAR N, et al. Effect of task-based bilateral arm training on upper limb recovery after stroke: a systematic review and meta-analysis[J]. J Stroke Cerebrovasc Dis, 2023, 32(7): 107131. |
[20] |
VEERBEEK J M, LANGBROEK-AMERSFOORT A C, VAN WEGEN E E H, et al. Effects of robot-assisted therapy for the upper limb after stroke[J]. Neurorehabil Neural Repair, 2017, 31(2): 107-121.
doi: 10.1177/1545968316666957 pmid: 27597165 |
[21] | LIMA J P S, SILVA L A, DELISLE-RODRIGUEZ D, et al. Unraveling transformative effects after tDCS and BCI intervention in chronic post-stroke patient rehabilitation: an alternative treatment design study[J]. Sensors, 2023, 23(23): 9302. |
[22] | MRIDHA M F, DAS S C, KABIR M M, et al. Brain-computer interface: advancement and challenges[J]. Sensors (Basel), 2021, 21(17): 5746. |
[23] | KHAN M A, DAS R, IVERSEN H K, et al. Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: from designing to application[J]. Comput Biol Med, 2020, 123: 103843. |
[24] | FROLOV A A, MOKIENKO O, LYUKMANOV R, et al. Post-stroke rehabilitation training with a motor-imagery-based brain-computer interface (BCI)-controlled hand exoskeleton: a randomized controlled multicenter trial[J]. Front Neurosci, 2017, 11: 400. |
[25] | 刘玲玉, 秦文婷, 靳令经, 等. 基于运动想象的脑机接口在脑卒中后手功能康复中的应用[J]. 中国康复, 2024, 39(12): 707-713. |
LIU L Y, QIN W T, JIN L J, et al. Application of motor imagery-based brain computer interface in stroke patients with hand dysfunction[J]. Chin J Rehabil, 2024, 39(12): 707-713. | |
[26] |
TSUCHIMOTO S, SHINDO K, HOTTA F, et al. Sensorimotor connectivity after motor exercise with neurofeedback in post-stroke patients with hemiplegia[J]. Neuroscience, 2019, 416: 109-125.
doi: S0306-4522(19)30521-4 pmid: 31356896 |
[27] | FLEURY M, LIOI G, BARILLOT C, et al. A survey on the use of haptic feedback for brain-computer interfaces and neurofeedback[J]. Front Neurosci, 2020, 14: 528. |
[28] |
LIU X, ZHANG W, LI W, et al. Effects of motor imagery based brain-computer interface on upper limb function and attention in stroke patients with hemiplegia: a randomized controlled trial[J]. BMC Neurol, 2023, 23: 136.
doi: 10.1186/s12883-023-03150-5 pmid: 37003976 |
[29] | CHEN Y W, LI K Y, LIN C H, et al. The effect of sequential combination of mirror therapy and robot-assisted therapy on motor function, daily function, and self-efficacy after stroke[J]. Sci Rep, 2023, 13(1): 16841. |
[30] |
CALABRÒ R S, ACCORINTI M, PORCARI B, et al. Does hand robotic rehabilitation improve motor function by rebalancing interhemispheric connectivity after chronic stroke? Encouraging data from a randomised-clinical-trial[J]. Clin Neurophysiol, 2019, 130(5): 767-780.
doi: S1388-2457(19)30079-3 pmid: 30904771 |
[31] |
ZHANG L, JIA G, MA J, et al. Short and long-term effects of robot-assisted therapy on upper limb motor function and activity of daily living in patients post-stroke: a meta-analysis of randomized controlled trials[J]. J Neuroeng Rehabil, 2022, 19: 76.
doi: 10.1186/s12984-022-01058-8 pmid: 35864524 |
[32] | SU T, WANG M, CHEN Z, et al. Effect of upper robot-assisted training on upper limb motor, daily life activities, and muscular tone in patients with stroke: a systematic review and meta‐analysis[J]. Brain Behav, 2024, 14(11): e70117. |
[33] |
刘换, 韩雪, 宋佳苧, 等. 体位限制下康复机器人训练对脑卒中后肩关节半脱位患者上肢功能的效果[J]. 中国康复理论与实践, 2024, 30(3): 303-309.
doi: 10.3969/j.issn.1006-9771.2024.03.007 |
LIU H, HAN X, SONG J N, et al. Effect of robotic training under position limitation on upper limbs in patients with shoulder subluxation after stroke[J]. Chin J Rehabil Theory Pract, 2024, 30(3): 303-309. | |
[34] | GUO N, WANG X, DUANMU D, et al. SSVEP-based brain computer interface controlled soft robotic glove for post-stroke hand function rehabilitation[J]. IEEE Trans Neural Syst Rehabil Eng, 2022, 30: 1737-1744. |
[35] | HALME H L, PARKKONEN L. The effect of visual and proprioceptive feedback on sensorimotor rhythms during BCI training[J]. PLoS One, 2022, 17(2): e0264354. |
[36] | QIAN Q, NAM C, GUO Z, et al. Distal versus proximal-an investigation on different supportive strategies by robots for upper limb rehabilitation after stroke: a randomized controlled trial[J]. J Neuroeng Rehabil, 2019, 16(1): 64. |
[37] | NIAZI I K, NAVID M S, RASHID U, et al. Associative cued asynchronous BCI induces cortical plasticity in stroke patients[J]. Ann Clin Transl Neurol, 2022, 9(5): 722-733. |
[38] | SHIRAI H. Hybrid ray-mode analysis of E-polarized plane wave diffraction by a thick slit[J]. IEEE Trans Antennas Propag, 2016, 64(11): 4828-4835. |
[39] | SAID R R, HEYAT M B B, SONG K, et al. A systematic review of virtual reality and robot therapy as recent rehabilitation technologies using EEG-brain-computer interface based on movement-related cortical potentials[J]. Biosensors, 2022, 12(12): 1134. |
[40] | 徐硕, 贾杰. "中枢-外周-中枢"闭环康复:脑卒中后手功能康复新理念的临床应用进展[J]. 中国康复医学杂志, 2024, 39(10): 1537-1541. |
[41] | 张宇佳, 陈健尔. 定量脑电图在脑卒中运动功能障碍康复中的应用进展[J]. 中华物理医学与康复杂志, 2024, 46(2): 172-176. |
[42] |
LANZONE J, MOTOLESE F, RICCI L, et al. Quantitative measures of the resting EEG in stroke: a systematic review on clinical correlation and prognostic value[J]. Neurol Sci, 2023, 44(12): 4247-4261.
doi: 10.1007/s10072-023-06981-9 pmid: 37542545 |
[43] | LIUZZI P, GRIPPO A, SODERO A, et al. Quantitative EEG and prognosis for recovery in post-stroke patients: the effect of lesion laterality[J]. Neurophysiol Clin, 2024, 54(3): 102952. |
[1] | ZHOU Tiantian, ZHANG Tong, ZHANG Qi, LIANG Yanhua, ZHANG Yanqing, YUE Qing, LI Sijia. Effect of Lokomat robotic-assisted gait training on lower limb motor function in children with hemiplegia [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(6): 711-720. |
[2] | FU Guojun, YU Xiufang, LÜ Xin, JI Lu, LIU Huaqing. Effect of composite electromagnetic stimulation combined with chin tuck against resistance on post-stroke patients with dysphagia [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(6): 721-728. |
[3] | LIANG Dan, WANG Weining, LI Ce, WU Yue, XU Shu, XIE Hongyu, WU Yi, ZHU Yulian. Effect of synchronous brain bionic electrical stimulation in hyperbaric oxygen chamber on stroke-related sleep disorders [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(5): 497-504. |
[4] | BAI Min, CAO Lihua, YE Ziqi, ZHOU Dingjie, LI Xueping. Effect of electromyographic perception-assisted robotic training combined with paired association stimulation on upper limb function in hemiplegic patients after stroke [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(5): 505-512. |
[5] | ZOU Congcong, WANG Xiaojun, MA Jinrong, LU Shangbo, DING Yong, WANG Hani, SONG Jianfei. Effect of transcutaneous auricular vagus nerve stimulation combined with dual-task training on upper limb function in patients with ischemic stroke [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(5): 513-519. |
[6] | SHI Bin, XU Ning, ZHOU Guangxue. Application of mirror therapy in motor function rehabilitation for stroke: a bibliometric analysis from 2005 to 2024 [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(5): 561-572. |
[7] | CHEN Mengye, QU Qingming, ZHU Jie, CHEN Xianggui, JIA Jie. Characteristics of cardiorespiratory fitness in patients with post-stroke hemiplegia based on cardiopulmonary exercise testing [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(4): 441-447. |
[8] | LI Xinlei, WEI Wei, SONG Jian, ZHAO Yuqing, KONG Weicheng, CAI Jiayu, SHI Haoran, XUE Xiehua. Application of resting-state electroencephalography in assessment of upper limb motor function of stroke patients [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(4): 448-457. |
[9] | LIU Pengcheng, QU Mengjian, LONG Liping, WANG Yalin, YANG Mingzhu, LIU Peiyong, ZHOU Jun, LIU Jing. Effect of pneumatic and electric hand training system with multiple sensory stimulation modalities combined with low-frequency repetitive transcranial magnetic stimulation on hand movement and tactile pressure sensation in patients with stroke [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(4): 458-465. |
[10] | SU Panpan, YE Peng, LU Qian, HE Chuan, LU Xiao. Effect of visual deprivation training combined with proprioceptive training on balance in hemiplegic patients after stroke [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(3): 254-263. |
[11] | LIN Changsheng, CAO Yu, WANG Tong, DAI Wenjun, HOU Hong, HU Cuiqin, BAO Shilei, PANG Sufang. Effect of closed-chain exercise training on hemiplegic shoulder pain and shoulder joint stability in stroke patients: a study with ultrasound [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(3): 264-273. |
[12] | WANG Xiaojun, WANG Hani, YU Hong, LI Yuanmei, ZHOU Yuda. Effect of high-definition transcranial direct current stimulation combined with upper limb robot on upper limb dysfunction after ischemic stroke [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(2): 218-224. |
[13] | MA Wenwen, WEN Yanzheng, Manripati ROZI, CUI Boya, Suyinqimei . Effect of healthy side tilt training on balance function in patients with Pusher syndrome after stroke [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(2): 225-230. |
[14] | QIN Qing, LIU Ye, YE Haiyan, LI Chen, CHEN Di. Robot-assisted therapy for upper limb of stoke: a bibliometrics analysis [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(1): 85-98. |
[15] | ZHANG Lu, MA Jiangping, YANG Erli, CHEN Qiuhua, DONG Lijun, YIN Xiaobing. Application of cognitive-motor dual-task training in stroke: a bibliometrics analysis [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(9): 1034-1042. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|