Chinese Journal of Rehabilitation Theory and Practice ›› 2024, Vol. 30 ›› Issue (5): 497-504.doi: 10.3969/j.issn.1006-9771.2024.05.001
Previous Articles Next Articles
Received:
2024-04-22
Revised:
2024-04-25
Published:
2024-05-25
Online:
2024-06-12
Contact:
WEI Xiaowei, E-mail: Supported by:
CLC Number:
WEI Xiaowei. Effect of digital empowerment techniques on physical activity and health for children with intellectual and developmental disabilities: a systematic review[J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(5): 497-504.
Table 1
PICO framework of systematic review of DET in physical activity and health for children with IDD"
人群 (Population) | 干预 (Intervention) | 比较 (Comparison) | 结局 (Outcome) |
---|---|---|---|
健康状况 轻度至中度IDD 智力残疾 发展性残疾 唐氏综合征 孤独症 年龄 功能状况 | 干预场所 特殊教育学校 家庭 医疗或康复机构 干预情境 体育课程 身体活动 运动康复 干预技术 可穿戴技术 移动健康应用程序与计算技术 虚拟现实和增强现实 动感游戏技术 干预方案 干预方式 干预频率 干预强度 干预持续时间 | 与常规身体活动相比 与传统康复干预相比 干预前后比较 | 身体活动水平 身体活动参与(参与时间、参与频率等) 身体功能 步行速度 平衡功能 粗大运动功能 肌肉力量 |
Table 2
PEDro Scale scores of included literature"
纳入文献 | 资格标准 | 随机分配 | 分配隐藏 | 基线相似 | 被试施盲 | 治疗师施盲 | 评估者施盲 | 被试流失率≤ 15% | 意向治疗分析 | 组间统计比较 | 报告点测量和变异量值 | 总分 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lau等[ | √ | √ | √ | √ | √ | √ | √ | √ | 7 | |||
Ahn[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 8 | ||
Wang等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 8 | ||
Kwon等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 9 | |
Case等[ | √ | √ | √ | √ | √ | √ | √ | √ | 7 | |||
Senette等[ | √ | √ | √ | √ | √ | √ | √ | √ | 7 | |||
Park等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 9 | |
Lee等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 8 |
Table 3
Basic characteristics of included literature"
纳入文献 | 国家 | 样本 特征 | 健康及 功能状况 | 干预场所 | 干预情境 | 干预技术 | 干预频率 | 比较 | 结局 |
---|---|---|---|---|---|---|---|---|---|
Lau等[ | 中国 | 8~18岁 n = 203 | 轻度智力残疾 | 特殊教育学校 | 体育课程 | AVGs,包括拳击、田径、保龄球、乒乓球、沙滩排球、足球、棒球、滑雪、网球、高尔夫、飞镖和美式足球等 | 中等~剧烈;每次30 min,每周2次,共12周 | 与常规身体活动相比 | 身体活动水平 无显著影响 身体功能 无显著影响 |
Ahn[ | 韩国 | 8~12岁 n = 13 | 轻度智力残疾 | 康复机构 | 运动康复 | Wii VR视频游戏和CoTras认知康复电脑游戏,包括射击、跳跃,敲打鼹鼠、跷跷板、手眼协调相关活动 其他身体活动:跑步 | 中等~剧烈;每次20 min,每周3次,共4周 | 干预前后比较 | 身体活动水平 未提及 身体功能 BOT-2总分改善 空间关系和视觉运动速度、运动减少视觉知觉和一般视觉知觉改善 |
Wang等[ | 中国 | 11~18岁 n = 30 | 轻度智力残疾 | 特殊教育学校 | 体育课程 | Xbox Kinect系统,包括酷跑、打鼹鼠、抓礼物、赛车、足球 其他身体活动:慢跑、跳绳等 | 中等~剧烈;每次40 min,每周3次,共8周 | 干预前后比较 | 身体活动水平 未提及 身体功能 下肢功能和肌力改善 |
Kwon等[ | 韩国 | 11~18岁 n = 52 | 轻度智力残疾 | 特殊教育学校 | 体育课程 | 基于ICT的运动游戏程序 其他身体活动:奔跑、水平跳跃、跳跃、反手投掷和运球技能、踢腿、体操和模仿活动 | 中等~剧烈;每次45 min,每周1次,共12周 | 与传统体育课程组、久坐行为组比较 干预前后比较 | 身体活动水平 未提及 身体功能 粗大运动功能(跳跃、反手投掷和运球)改善 立定跳远能力提高 |
Case等[ | 美国 | 10~16岁 n = 14 | 孤独症 | 特殊教育学校 | 体育课程 | 计算机视频演示技术,包括粗大运动技能练习 | 强度未提及;每次30 min,每周5次,共5周 | 与常规身体活动相比 | 身体活动水平 未提及 身体功能 无显著影响 |
Senette等[ | 意大利 | 7~10岁 n = 6 | 轻至中度智力残疾 唐氏综合征 | 康复机构 | 运动康复 | Stepmania的节奏视频游戏、Fitbit智能设备,包括认知运动训练,如步行、协调动作练习等 | 强度未提及;每次45 min,每周3次,共5周 | 干预前后比较 | 身体活动水平 未提及 身体功能 注意力、听觉记忆和空间记忆能力提升 身体协调性与平衡能力改善 |
Park等[ | 韩国 | 8~13岁 n = 35 | 轻度智力残疾 | 康复机构 | 运动康复 | 基于认知功能和社交技能的VR训练系统 其他身体活动:水平跳跃、跑步、跳高、步行练习、杠铃栏、踏步练习、踢球、投球、平衡练习和动物运动 | 中等强度;每次30 min,每周3次,共8周 | 与传统VR技术组比较 | 身体活动水平 未提及 身体功能 运动协调性(延伸水平跳跃、跳跃和过臂投掷)改善 |
Lee等[ | 韩国 | 7~12岁 n = 23 | 发展性残疾 | 康复机构 | 运动康复 | VZFit传感器和Oculus Quest护目镜 其他身体活动:骑自行车 | 低~剧烈;每次40 min,每周2次,共12周 | 与传统康复干预比较 干预前后比较 | 身体活动水平 学校、社区、社会身体活动参与频率增加 身体功能 运动技能评分增加3.2分 粗大运动功能评分增加11.3分 |
[1] |
库雪婷, 王斌. 智力和发展性残疾儿童青少年身体活动效益:基于ICF的系统综述[J]. 中国康复理论与实践, 2022, 28(12): 1416-1425.
doi: 10.3969/j.issn.1006-9771.2022.12.006 |
KU X T, WANG B. Health benefits of physical activity for children and adolescents with intellectual and developmental disabilities: a systematic review using ICF[J]. Chin J Rehabil Theory Pract, 2022, 28(12): 1416-1425. | |
[2] | World Health Organization, United Nations Children's Fund. Global report on children with developmental disabilities: from the margins to the mainstream[M]. Geneva: World Health Organization, 2023. |
[3] |
张青, 孙建刚, 杨洪荣, 等. 教育情境下智力与发展性残疾儿童的功能和适应性行为评估:基于ICF评估内容和心理测量特性研究[J]. 中国康复理论与实践, 2024, 30(3): 249-256.
doi: 10.3969/j.issn.1006-9771.2024.03.001 |
ZHANG Q, SUN J G, YANG H R, et al. Research on content and psychometric properties of evaluations of functioning and adaptive behaviors in children with intellectual and developmental disabilities in educational settings using ICF[J]. Chin J Rehabil Theory Pract, 2024, 30(3): 249-256. | |
[4] | SCHALOCK R L, LUCKASSON R, TASSÉ M J. An Overview of Intellectual Disability: Definition, Diagnosis, Classification, and Systems of Supports (12th ed.)[J]. Am J Intellect Dev Disabil, 2021, 126(6): 439-442. |
[5] |
魏晓微, 杨剑, 魏春艳, 等. 学校环境下适应性体育课程促进智力与发展性残疾儿童心理运动发展的系统综述[J]. 中国康复理论与实践, 2023, 29(8): 910-918.
doi: 10.3969/j.issn.1006-9771.2023.08.007 |
WEI X W, YANG J, WEI C Y, et al. Adapted physical education programs for psychomotor development in school settings for children with intellectual and developmental disabilities: a systematic review[J]. Chin J Rehabil Theory Pract, 2023, 29(8): 910-918. | |
[6] | United Nations. Shaping digital technologies that empower people to build their lives[EB/OL]. (2023-05-05)[2024-01-02]. https://www.ohchr.org/en/stories/2023/05/shaping-digital-technologies-empower-people-build-their-lives. |
[7] | KIM T, KIRK T N. Online and mobile-technology-facilitated movement interventions among disability populations: a scoping review[J]. Kinesiol Rev, 2023, 12(1): 1-12. |
[8] | CROWELL C, MORA-GUIARD J, PARES N. Structuring collaboration: multi-user full-body interaction environments for children with autism spectrum disorder[J]. Res Autism Spectrum Disord, 2019, 58(3): 96-110. |
[9] | EVENSEN I, OMFJORD J B, TORRADO J C, et al. Designing game-inspired applications to increase daily PA for people with ID[C]// Proceedings of the Entertainment Computing and Serious Games, 2019. Cham: Springer International Publishing, 2019. |
[10] |
CASHIN A G, MCAULEY J H. Clinimetrics: Physiotherapy Evidence Database (PEDro) scale[J]. J Physiother, 2020, 66(1): 59.
doi: S1836-9553(19)30092-X pmid: 31521549 |
[11] | LAU P, WANG G, WANG J J. Effectiveness of active video game usage on body composition, physical activity level and motor proficiency in children with intellectual disability[J]. J Appl Res Intell Disabil, 2020, 33(6): 1465-1477. |
[12] | AHN S N. Combined effects of virtual reality and computer game-based cognitive therapy on the development of visual-motor integration in children with intellectual disabilities: a pilot study[J]. Occup Ther Int, 2021, 2021(3): 6696779. |
[13] | WANG S, YU H, LU Z, et al. Eight-week virtual reality training improves lower extremity muscle strength but not balance in adolescents with intellectual disability: a randomized controlled trial[J]. Front Physiol, 2022, 13(4): 1053065. |
[14] | KWON H, MAENG H, CHUNG J. Development of an ICT-based exergame program for children with developmental disabilities[J]. J Clin Med, 2022, 11(19): 5890. |
[15] | CASE L, YUN J. Video modeling and test of Gross Motor Development-3 performance among children with autism spectrum disorder[J]. Eur J Adapt Phys Act, 2019, 11(2): 501-526. |
[16] | SENETTE C, TRUJILLO A, PERRONE E, et al. An interactive cognitive-motor training system for children with intellectual disability[C]// Proceedings of the Universal Access in Human-Computer Interaction Methods, Technologies, and Users, 2018. Cham: Springer International Publishing, 2018. |
[17] | PARK S B, JU Y, KWON H, et al. Effect of a cognitive function and social skills-based digital exercise therapy using IoT on motor coordination in children with intellectual and developmental disability[J]. Int J Environ Res Public Health, 2022, 19(24): 16499. |
[18] | LEE H K, JIN J. The effect of a virtual reality Exergame on motor skills and physical activity levels of children with a developmental disability[J]. Res Dev Disabil, 2023, 132(5): 104386. |
[19] |
JAMES S, ZIVIANI J, WARE R S, et al. Randomized controlled trial of web-based multimodal therapy for unilateral cerebral palsy to improve occupational performance[J]. Dev Med Child Neurol, 2015, 57(6): 530-538.
doi: 10.1111/dmcn.12705 pmid: 25955443 |
[20] | CHIȚU I B, TECĂU A S, CONSTANTIN C P, et al. Exploring the opportunity to use virtual reality for the education of children with disabilities[J]. Children (Basel), 2023, 10(3): 436. |
[21] |
LOPES J B P, DUARTE N A C, LAZZARI R D, et al. Virtual reality in the rehabilitation process for individuals with cerebral palsy and Down syndrome: a systematic review[J]. J Bodyw Mov Ther, 2020, 24(4): 479-483.
doi: 10.1016/j.jbmt.2018.06.006 pmid: 33218550 |
[22] | MITSEA E, DRIGAS A, SKIANIS C. VR gaming for meta-skills training in special education: the role of metacognition, motivations, and emotional intelligence[J]. Educ Sci, 2023, 13(7): 639. |
[23] | REN Z, WU J. The effect of virtual reality games on the gross motor skills of children with cerebral palsy: a meta-analysis of randomized controlled trials[J]. Int J Environ Res Public Health, 2019, 16(20): 3885. |
[24] | HSU T Y. Effects of Wii Fit® balance game training on the balance ability of students with intellectual disabilities[J]. J Phys Ther Sci, 2016, 28(5): 1422-1426. |
[25] | HOWIE E K, CAMPBELL A C, ABBOTT R A, et al. Understanding why an active video game intervention did not improve motor skill and physical activity in children with developmental coordination disorder: a quantity or quality issue?[J]. [ahead of print].Res Dev Disabil, 2017. doi: 10.1016/j.ridd.2016.10.013. |
[26] | SANTAMARIA-LÓPEZ T M, RUIZ V G. Distance education for children with a disability and/or from vulnerable families[J]. Educ Inform Technol, 2023, 28(5): 5297-5312. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|