Chinese Journal of Rehabilitation Theory and Practice ›› 2025, Vol. 31 ›› Issue (7): 812-821.doi: 10.3969/j.issn.1006-9771.2025.07.008
Previous Articles Next Articles
SUN Wanting1, YASEN Ailipinai1, GONG Xiang1, XIAO Yue1,2, GAN Zhaodan1,2, LIU Mingjie1, ZENG Lanting1, MA Shuyue1, LU Jun1,2(), XU Guangxu1,2,3(
)
Received:
2025-03-25
Revised:
2025-05-15
Published:
2025-07-25
Online:
2025-07-30
Contact:
LU Jun, E-mail: lujunrehab@foxmail.com; XU Guangxu, E-mail: xuguangxu@njmu.edu.cn
Supported by:
CLC Number:
SUN Wanting, YASEN Ailipinai, GONG Xiang, XIAO Yue, GAN Zhaodan, LIU Mingjie, ZENG Lanting, MA Shuyue, LU Jun, XU Guangxu. Effect of high-frequency repetitive transcranial magnetic stimulation on upper limb function of stroke patients based on motor sequence learning[J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(7): 812-821.
Table 1
Comparison of baseline data among three groups"
组别 | n | 性别(男/女)/n | 年龄/岁 | 卒中性质(梗死/出血)/n | 卒中半球(左/右)/n | MMSE/分 | 病程/月 | BMI/(kg·m-2) |
---|---|---|---|---|---|---|---|---|
对照组 | 20 | 17/3 | 58.70±16.24 | 2/18 | 11/9 | 26.15(24.25,29.00) | 1.64(0.50,2.34) | 24.79(23.66,27.04) |
SMA组 | 20 | 18/2 | 57.50±17.14 | 3/17 | 12/8 | 28.00(24.00,29.00) | 1.09(0.54,2.83) | 23.19(20.55,27.40) |
M1组 | 20 | 15/5 | 57.30±8.43 | 6/14 | 13/7 | 26.5(22.00,27.00) | 0.67(0.67,1.84) | 23.88(23.78,24.28) |
F/χ2/H值 | 1.662 | 0.058 | 2.823 | 0.418 | 2.360 | 1.073 | 1.177 | |
P值 | 0.572a | 0.944b | 0.339a | 0.945a | 0.307c | 0.585c | 0.555c |
Table 4
Descriptive statistics of various indicators among three groups pre- and post-intervention"
项目 | 组别 | 治疗前 | 治疗后 | ||
---|---|---|---|---|---|
均数 | 标准差 | 均数 | 标准差 | ||
RT随机序列/ms | 对照组 | 1843.21 | 1500.38 | 1935.98 | 1274.58 |
SMA组 | 1859.22 | 1436.31 | 1761.47 | 1195.67 | |
M1组 | 1933.25 | 1396.62 | 1867.25 | 1292.45 | |
RT顺序序列/ms | 对照组 | 2384.19 | 1465.39 | 2235.43 | 1788.06 |
SMA组 | 2238.65 | 1712.87 | 1809.26 | 1177.94 | |
M1组 | 2326.19 | 1656.09 | 1930.31 | 1430.07 | |
∆RT/ms | 对照组 | 1473.34 | 1485.19 | 1614.21 | 1592.12 |
SMA组 | 1426.20 | 1647.63 | 1189.48 | 1538.74 | |
M1组 | 1412.78 | 1614.67 | 1292.77 | 1639.48 | |
FMA-UE | 对照组 | 24.65 | 5.99 | 37.75 | 8.19 |
SMA组 | 23.58 | 8.25 | 48.84 | 11.15 | |
M1组 | 22.89 | 9.37 | 46.11 | 11.76 | |
MBI | 对照组 | 41.00 | 5.31 | 58.10 | 7.59 |
SMA组 | 43.84 | 9.29 | 71.53 | 11.17 | |
M1组 | 42.37 | 9.65 | 69.58 | 12.67 |
Table 5
Repeated measures ANOVA results of each indicator"
变量 | 平方和 | 自由度 | 均方 | F值 | P值 | |
---|---|---|---|---|---|---|
RT随机序列 | 组内 | 1038160.950 | 1 | 1038160.950 | 0.566 | 0.452 |
组间 | 11837381.443 | 2 | 5918690.7213 | 3.228 | 0.040 | |
组内 | 12908729.071 | 2 | 6454364.535 | 3.520 | 0.030 | |
RT顺序序列 | 组内 | 195537285.218 | 1 | 195537285.218 | 81.546 | < 0.001 |
组间 | 104353851.771 | 2 | 52176925.886 | 21.760 | < 0.001 | |
组内 | 29216678.833 | 2 | 14608339.416 | 6.092 | 0.002 | |
∆RT | 组内 | 9603225.048 | 1 | 9603225.048 | 3.815 | 0.051 |
组间 | 78882509.857 | 2 | 39441254.928 | 15.669 | < 0.001 | |
组内 | 46875737.454 | 2 | 23437868.727 | 9.311 | < 0.001 | |
FMA-UE | 组内 | 12209.331 | 1 | 12209.331 | 141.535 | < 0.001 |
组间 | 508.086 | 2 | 254.043 | 2.945 | 0.507 | |
组内 | 832.619 | 2 | 416.309 | 4.826 | 0.100 | |
MBI | 组内 | 16691.797 | 1 | 16691.797 | 183.791 | < 0.001 |
组间 | 1444.114 | 2 | 722.057 | 7.950 | 0.001 | |
组内 | 702.546 | 2 | 351.273 | 3.868 | 0.024 |
Table 6
Difference test results pre- and post-intervention in each group"
变量 | 组别 | 治疗前后平均值差 | 平均值差标准差 | P值 | 95%CI | |
---|---|---|---|---|---|---|
下限 | 上限 | |||||
RT随机序列 | 对照组 | -92.776 | 55.630 | 0.095 | -201.862 | 16.310 |
SMA组 | 97.748 | 54.316 | 0.072 | -8.815 | 204.312 | |
M1组 | 66.000 | 53.829 | 0.221 | -39.554 | 171.554 | |
RT顺序序列 | 对照组 | 148.764 | 65.627 | 0.023 | 20.072 | 277.456 |
SMA组 | 429.390 | 59.134 | < 0.001 | 314.494 | 544.287 | |
M1组 | 395.880 | 68.178 | < 0.001 | 262.121 | 529.639 | |
∆RT | 对照组 | -140.087 | 64.750 | 0.030 | -267.904 | -13.849 |
SMA组 | 236.724 | 64.674 | < 0.001 | 109.839 | 363.609 | |
M1组 | 120.011 | 64.310 | 0.026 | 14.009 | 226.013 | |
FMA-UE | 对照组 | -13.100 | 4.541 | < 0.001 | -15.225 | -10.975 |
SMA组 | -25.263 | 6.723 | < 0.001 | -28.504 | -22.023 | |
M1组 | -23.211 | 6.933 | < 0.001 | -26.552 | -19.869 | |
MBI | 对照组 | -17.100 | 5.015 | < 0.001 | -19.447 | -14.753 |
SMA组 | -27.684 | 8.280 | < 0.001 | -31.675 | -23.693 | |
M1组 | -27.211 | 7.307 | < 0.001 | -30.733 | -23.688 |
Table 7
Pre hoc Bonferroni test results of differences in the indicators"
变量 | 组别 | 组别 | 平均差值 | P值 | 95%CI | |
---|---|---|---|---|---|---|
下限 | 上限 | |||||
RT随机序列 | SMA组 | M1组 | -74.033 | 0.621 | -214.491 | 66.425 |
SMA组 | 对照组 | 16.012 | > 0.999 | -122.679 | 154.703 | |
M1组 | 对照组 | 90.045 | 0.360 | -48.646 | 228.736 | |
RT顺序序列 | SMA组 | M1组 | -87.547 | 0.542 | -244.169 | 69.076 |
SMA组 | 对照组 | -145.547 | 0.073 | -300.199 | 9.106 | |
M1组 | 对照组 | -58.000 | > 0.999 | -212.652 | 96.653 | |
∆RT | SMA组 | M1组 | 13.422 | > 0.999 | -140.280 | 167.124 |
SMA组 | 对照组 | -47.132 | > 0.999 | -198.901 | 104.637 | |
M1组 | 对照组 | -60.554 | > 0.999 | -212.323 | 91.215 | |
FMA-UE | SMA组 | M1组 | 0.684 | > 0.999 | -5.695 | 7.064 |
SMA组 | 对照组 | -1.071 | > 0.999 | -7.370 | 5.228 | |
M1组 | 对照组 | -1.755 | > 0.999 | -8.054 | 4.544 | |
MBI | SMA组 | M1组 | 1.474 | > 0.999 | -5.153 | 8.101 |
SMA组 | 对照组 | 2.842 | 0.864 | -3.701 | 9.386 | |
M1组 | 对照组 | 1.368 | > 0.999 | -5.175 | 7.912 |
Table 8
Post hoc Bonferroni test results of differences in the indicators"
变量 | 组别 | 组别 | 平均差值 | P值 | 95%CI | |
---|---|---|---|---|---|---|
下限 | 上限 | |||||
RT随机序列 | SMA组 | M1组 | -105.781 | 0.106 | -226.206 | 14.644 |
SMA组 | 对照组 | -174.512 | 0.002 | -296.472 | -52.553 | |
M1组 | 对照组 | -68.731 | 0.515 | -189.157 | 51.694 | |
RT顺序序列 | SMA组 | M1组 | -121.057 | 0.124 | -263.178 | 21.064 |
SMA组 | 对照组 | -426.173 | < 0.001 | -568.294 | -284.052 | |
M1组 | 对照组 | -305.116 | < 0.001 | -449.048 | -161.184 | |
∆RT | SMA组 | M1组 | -103.291 | 0.328 | -257.797 | 51.215 |
SMA组 | 对照组 | -424.732 | < 0.001 | -577.295 | -272.170 | |
M1组 | 对照组 | -321.441 | < 0.001 | -474.004 | -168.878 | |
FMA-UE | SMA组 | M1组 | 2.737 | > 0.999 | -5.633 | 11.106 |
SMA组 | 对照组 | 11.092 | 0.005 | 2.828 | 19.356 | |
M1组 | 对照组 | 8.355 | 0.047 | 0.091 | 16.619 | |
MBI | SMA组 | M1组 | 1.947 | > 0.999 | -6.578 | 10.472 |
SMA组 | 对照组 | 13.426 | 0.001 | 5.009 | 21.844 | |
M1组 | 对照组 | 11.479 | 0.004 | 3.061 | 19.897 |
[1] |
The Writing Committee of The Report on Cardiovascular Health and Diseases in China. Report on cardiovascular health and diseases in China 2022: an updated summary[J]. Biomed Environ Sci, 2023, 36(8): 669-701.
doi: 10.3967/bes2023.106 pmid: 37711081 |
[2] | HU S S, The Writing Committee of the Report on Cardiovascular Health and Diseases in China. Epidemiology and current management of cardiovascular disease in China[J]. J Geriatr Cardiol, 2024, 21(4): 387-406. |
[3] |
ABO M, KAKUDA W, MOMOSAKI R, et al. Randomized, multicenter, comparative study of NEURO versus CIMT in poststroke patients with upper limb hemiparesis: the NEURO-VERIFY study[J]. Int J Stroke, 2014, 9(5): 607-612.
doi: 10.1111/ijs.12100 pmid: 24015934 |
[4] |
文翠凤, 娅茹, 黄昊, 等. 镜像疗法对脑卒中后Ⅰ型复杂区域性疼痛综合征患者上肢功能及大脑皮质活动效果的随机对照试验[J]. 中国康复理论与实践, 2024, 30(10): 1203-1214.
doi: 10.3969/j.issn.1006-9771.2024.10.011 |
WEN C F, YA R, HUANG H, et al. Effect of mirror therapy on upper limb function and cerebral cortex activity in patients with type I complex regional pain syndrome after stroke: a randomized controlled trial[J]. Chin J Rehabil Theory Pract, 2024, 30(10): 1203-1214. | |
[5] |
梁天佳, 龙耀斌, 陆丽燕, 等. 绳带辅助本体感觉神经肌肉促进技术训练联合绳带辅助脑机接口训练对脑卒中偏瘫上肢康复效果的随机对照试验[J]. 中国康复理论与实践, 2024, 30(8): 972-978.
doi: 10.3969/j.issn.1006-9771.2024.08.013 |
LIANG T J, LONG Y B, LU L Y, et al. Effect of rope-assisted proprioceptive neuromuscular facilitation combined with rope-assisted brain-computer interface training on upper limb function in stroke patients with hemiplegia: a randomized controlled trial[J]. Chin J Rehabil Theory Pract, 2024, 30(8): 972-978. | |
[6] | BERLOT E, POPP N J, DIEDRICHSEN J. A critical re-evaluation of fMRI signatures of motor sequence learning[J]. Elife, 2020, 9: e55241. |
[7] |
LIU Y, HUANG S, XU W, et al. An fMRI study on the generalization of motor learning after brain actuated supernumerary robot training[J]. NPJ Sci Learn, 2024, 9(1): 80.
doi: 10.1038/s41539-024-00294-y pmid: 39738213 |
[8] | FIROUZI M, BAETENS K, DUTA C, et al. The cerebellum is involved in implicit motor sequence learning[J]. Front Neurosci, 2024, 18: 1433867. |
[9] | DAHMS C, NOLL A, WAGNER F, et al. Connecting the dots: Motor and default mode network crossroads in post-stroke motor learning deficits[J]. Neuroimage Clin, 2024, 42: 103601. |
[10] |
BOYD L A, WINSTEIN C J. Implicit motor-sequence learning in humans following unilateral stroke: the impact of practice and explicit knowledge[J]. Neurosci Lett, 2001, 298(1): 65-69.
pmid: 11154837 |
[11] | VELDKAMP R, MOUMDJIAN L, VAN DUN K, et al. Motor sequence learning in a goal-directed stepping task in persons with multiple sclerosis: a pilot study[J]. Ann N Y Acad Sci, 2022, 1508(1): 155-171. |
[12] |
ANDRUSHKO J W, RINAT S, GREELEY B, et al. Improved processing speed and decreased functional connectivity in individuals with chronic stroke after paired exercise and motor training[J]. Sci Rep, 2023, 13(1): 13652.
doi: 10.1038/s41598-023-40605-8 pmid: 37608062 |
[13] | LEFAUCHEUR J P, ALEMAN A, BAEKEN C, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014-2018)[J]. Clin Neurophysiol, 2020, 131(2): 474-528. |
[14] | FIROUZI M, BAETENS K, SWINNEN E, et al. Does transcranial direct current stimulation of the primary motor cortex improve implicit motor sequence learning in Parkinson's disease?[J]. J Neurosci Res, 2024, 102(2): e25311. |
[15] | WANG X, CHEN X, CHAN K L C, et al. Does the alternating timing of rTMS combined with soft-hand rehabilitation robot affect the recovery of hand function in patients after stroke? A study protocol for a multicentre randomised controlled trial[J]. BMJ Open, 2025, 15(3): e094672. |
[16] | 中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国各类主要脑血管病诊断要点2019[J]. 中华神经科杂志, 2019, 52(9): 710-715. |
Chinese Society of Neurology, Chinese Stroke Society. Diagnostic criteria of cerebrovascular diseases in China (version 2019)[J]. Chin J Neurol, 2019, 52(9): 710-715. | |
[17] |
OLDFIELD R C. The assessment and analysis of handedness: the Edinburgh inventory[J]. Neuropsychologia, 1971, 9(1): 97-113.
doi: 10.1016/0028-3932(71)90067-4 pmid: 5146491 |
[18] | GUO Z, JIN Y, BAI X, et al. Distinction of high- and low-frequency repetitive transcranial magnetic stimulation on the functional reorganization of the motor network in stroke patients[J]. Neural Plast, 2021, 2021: 8873221. |
[19] |
BRUNNER I, LUNDQUIST C B, PEDERSEN A R, et al. Brain computer interface training with motor imagery and functional electrical stimulation for patients with severe upper limb paresis after stroke: a randomized controlled pilot trial[J]. J Neuroeng Rehabil, 2024, 21(1): 10.
doi: 10.1186/s12984-024-01304-1 pmid: 38245782 |
[20] | TROFIMOVA O, MOTTAZ A, ALLAMAN L, et al. The "implicit" serial reaction time task induces rapid and temporary adaptation rather than implicit motor learning[J]. Neurobiol Learn Mem, 2020, 175: 107297. |
[21] | SÁNCHEZ-MORA J, TAMAYO R M. From incidental learning to explicit memory: the role of sleep after exposure to a serial reaction time task[J]. Acta Psychol(Amst), 2021, 217: 103325. |
[22] |
ROBERTSON E M. The serial reaction time task: implicit motor skill learning?[J]. J Neurosci, 2007, 27(38): 10073-10075.
doi: 10.1523/JNEUROSCI.2747-07.2007 pmid: 17881512 |
[23] |
SEE J, DODAKIAN L, CHOU C, et al. A standardized approach to the Fugl-Meyer Assessment and its implications for clinical trials[J]. Neurorehabil Neural Repair, 2013, 27(8): 732-741.
doi: 10.1177/1545968313491000 pmid: 23774125 |
[24] | LEUNG S O, CHAN C C, SHAH S. Development of a Chinese version of the modified Barthel Index-validity and reliability[J]. Clin Rehabil, 2007, 21(10): 912-922. |
[25] |
HOTERMANS C, PEIGNEUX P, DE NOORDHOUT A M, et al. Repetitive transcranial magnetic stimulation over the primary motor cortex disrupts early boost but not delayed gains in performance in motor sequence learning[J]. Eur J Neurosci, 2008, 28(6): 1216-1221.
doi: 10.1111/j.1460-9568.2008.06421.x pmid: 18783369 |
[26] |
WILKINSON L, KOSHY P J, STEEL A, et al. Motor cortex inhibition by TMS reduces cognitive non-motor procedural learning when immediate incentives are present[J]. Cortex, 2017, 97: 70-80.
doi: S0010-9452(17)30330-1 pmid: 29096197 |
[27] |
WANG L, ZHU Q X, ZHONG M H, et al. Effects of corticospinal tract integrity on upper limb motor function recovery in stroke patients treated with repetitive transcranial magnetic stimulation[J]. J Integr Neurosci, 2022, 21(2): 50.
doi: 10.31083/j.jin2102050 pmid: 35364638 |
[28] |
WANG Q, ZHANG D, ZHAO Y Y, et al. Effects of high-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex on motor recovery in severe hemiplegic stroke: a randomized clinical trial[J]. Brain Stimul, 2020, 13(4): 979-986.
doi: S1935-861X(20)30073-5 pmid: 32380449 |
[29] |
XIE H, LI X, XU G, et al. Effects of transcranial magnetic stimulation on dynamic functional networks in stroke patients as assessed by functional near-infrared spectroscopy: a randomized controlled clinical trial[J]. Cereb Cortex, 2023, 33(24): 11668-11678.
doi: 10.1093/cercor/bhad404 pmid: 37885140 |
[30] |
DOYON J. Motor sequence learning and movement disorders[J]. Curr Opin Neurol, 2008, 21(4): 478-483.
doi: 10.1097/WCO.0b013e328304b6a3 pmid: 18607210 |
[31] | MUEHLBERG C, GOERG S, RULLMANN M, et al. Motor learning is modulated by dopamine availability in the sensorimotor putamen[J]. Brain Commun, 2024, 6(6): fcae409. |
[32] |
DAHMS C, BRODOEHL S, WITTE O W, et al. The importance of different learning stages for motor sequence learning after stroke[J]. Hum Brain Mapp, 2020, 41(1): 270-286.
doi: 10.1002/hbm.24793 pmid: 31520506 |
[33] |
HERMSDORF F, FRICKE C, STOCKERT A, et al. Motor performance but neither motor learning nor motor consolidation are impaired in chronic cerebellar stroke patients[J]. Cerebellum, 2020, 19(2): 275-285.
doi: 10.1007/s12311-019-01097-3 pmid: 31997138 |
[34] | SHENG R, CHEN C, CHEN H, et al. Repetitive transcranial magnetic stimulation for stroke rehabilitation: insights into the molecular and cellular mechanisms of neuroinflammation[J]. Front Immunol, 2023, 14: 1197422. |
[35] | CHEN J, FAN Y, JIA X, et al. The supplementary motor area as a flexible hub mediating behavioral and neuroplastic changes in motor sequence learning: a TMS and TMS-EEG study[J]. Neurosci Bull, 2025, 41(5): 837-852. |
[36] | GAO J, WANG H, HU Z, et al. Investigating the effects of excitatory and inhibitory somatosensory rTMS on somatosensory functioning in the acute and subacute phases of stroke: a preliminary double-blind and randomized trial[J]. Front Hum Neurosci, 2024, 18: 1474212. |
[37] | THONG S, DOERY E, BIABANI M, et al. Disinhibition across secondary motor cortical regions during motor sequence learning: a TMS-EEG Study[J]. J Neurosci, 2025, 45(8): e0443242024. |
[38] | HAMANO Y H, SUGAWARA S K, FUKUNAGA M, et al. The integrative role of the M1 in motor sequence learning[J]. Neurosci Lett, 2021, 760: 136081. |
[39] |
HAMANO Y H, SUGAWARA S K, YAMAMOTO T, et al. The left primary motor cortex and cerebellar vermis are critical hubs in bimanual sequential learning[J]. Exp Brain Res, 2024, 243(1): 4.
doi: 10.1007/s00221-024-06944-2 pmid: 39607575 |
[40] | LEFAUCHEUR J P, ANDRÉ-OBADIA N, ANTAL A, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation(rTMS)[J]. Clin Neurophysiol, 2014, 125(11): 2150-2206. |
[41] | YANG K, XI X, WANG T, et al. Effects of transcranial direct current stimulation on brain network connectivity and complexity in motor imagery[J]. Neurosci Lett, 2021, 757: 135968. |
[42] |
ARAI N, LU M K, UGAWA Y, et al. Effective connectivity between human supplementary motor area and primary motor cortex: a paired-coil TMS study[J]. Exp Brain Res, 2012, 220(1): 79-87.
doi: 10.1007/s00221-012-3117-5 pmid: 22623093 |
[1] | SHAN Lei, LIU Ying, ZHANG Xin, CHI Qianqian, ZHU Xiaomin. Effect of accelerated intermittent theta burst stimulation on post-stroke depression [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(7): 822-829. |
[2] | LIU Lanqun, LI Yanli, LIANG Jiaqi, CHEN Shuang, LIU Huilin. Effect of scalp acupuncture combined with computer-assisted training on memory impairment after stroke [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(7): 862-868. |
[3] | LIU Xuan, GAO Ling, CHU Fengming, CHEN Jie, ZHANG Ming. Effect of brain-computer interface combined with upper limb rehabilitation robot on upper limb function of stroke patients [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(6): 703-710. |
[4] | FU Guojun, YU Xiufang, LÜ Xin, JI Lu, LIU Huaqing. Effect of composite electromagnetic stimulation combined with chin tuck against resistance on post-stroke patients with dysphagia [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(6): 721-728. |
[5] | LIANG Dan, WANG Weining, LI Ce, WU Yue, XU Shu, XIE Hongyu, WU Yi, ZHU Yulian. Effect of synchronous brain bionic electrical stimulation in hyperbaric oxygen chamber on stroke-related sleep disorders [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(5): 497-504. |
[6] | BAI Min, CAO Lihua, YE Ziqi, ZHOU Dingjie, LI Xueping. Effect of electromyographic perception-assisted robotic training combined with paired association stimulation on upper limb function in hemiplegic patients after stroke [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(5): 505-512. |
[7] | ZOU Congcong, WANG Xiaojun, MA Jinrong, LU Shangbo, DING Yong, WANG Hani, SONG Jianfei. Effect of transcutaneous auricular vagus nerve stimulation combined with dual-task training on upper limb function in patients with ischemic stroke [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(5): 513-519. |
[8] | SHI Bin, XU Ning, ZHOU Guangxue. Application of mirror therapy in motor function rehabilitation for stroke: a bibliometric analysis from 2005 to 2024 [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(5): 561-572. |
[9] | CHEN Mengye, QU Qingming, ZHU Jie, CHEN Xianggui, JIA Jie. Characteristics of cardiorespiratory fitness in patients with post-stroke hemiplegia based on cardiopulmonary exercise testing [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(4): 441-447. |
[10] | LI Xinlei, WEI Wei, SONG Jian, ZHAO Yuqing, KONG Weicheng, CAI Jiayu, SHI Haoran, XUE Xiehua. Application of resting-state electroencephalography in assessment of upper limb motor function of stroke patients [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(4): 448-457. |
[11] | LIU Pengcheng, QU Mengjian, LONG Liping, WANG Yalin, YANG Mingzhu, LIU Peiyong, ZHOU Jun, LIU Jing. Effect of pneumatic and electric hand training system with multiple sensory stimulation modalities combined with low-frequency repetitive transcranial magnetic stimulation on hand movement and tactile pressure sensation in patients with stroke [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(4): 458-465. |
[12] | SU Panpan, YE Peng, LU Qian, HE Chuan, LU Xiao. Effect of visual deprivation training combined with proprioceptive training on balance in hemiplegic patients after stroke [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(3): 254-263. |
[13] | LIN Changsheng, CAO Yu, WANG Tong, DAI Wenjun, HOU Hong, HU Cuiqin, BAO Shilei, PANG Sufang. Effect of closed-chain exercise training on hemiplegic shoulder pain and shoulder joint stability in stroke patients: a study with ultrasound [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(3): 264-273. |
[14] | WANG Xiaojun, WANG Hani, YU Hong, LI Yuanmei, ZHOU Yuda. Effect of high-definition transcranial direct current stimulation combined with upper limb robot on upper limb dysfunction after ischemic stroke [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(2): 218-224. |
[15] | MA Wenwen, WEN Yanzheng, Manripati ROZI, CUI Boya, Suyinqimei . Effect of healthy side tilt training on balance function in patients with Pusher syndrome after stroke [J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(2): 225-230. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|