Chinese Journal of Rehabilitation Theory and Practice ›› 2024, Vol. 30 ›› Issue (5): 513-519.doi: 10.3969/j.issn.1006-9771.2024.05.003
Previous Articles Next Articles
SU Rufeng1, ZHONG Xiaoke2, GAO Xiaoyan3, JIANG Changhao3()
Received:
2024-04-07
Published:
2024-05-25
Online:
2024-06-12
Contact:
JIANG Changhao, E-mail: Supported by:
CLC Number:
SU Rufeng, ZHONG Xiaoke, GAO Xiaoyan, JIANG Changhao. Application of artificial intelligence in anxiety and depression among children and adolescents: a scoping review[J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(5): 513-519.
Table 1
Basic characteristics of included literature"
纳入文献 | 国家 | 年龄/岁 | 被试数量/人 | 方法与工具 | 预测 指标 | 结局指标 | 人工智能 模型/算法 |
---|---|---|---|---|---|---|---|
Haque等[ | 澳大利亚 | 14~17 | n = 6310 训练集 = 4417 测试集 = 1893 | 横断面研究:从Young Minds Matter数据库筛选出与抑郁最相关的11个特征,使用4种模型评估预测效果 | 抑郁 | 准确率 随机森林:95% GNB:94% 决策树:95% XGBoost:95% | 随机森林 GNB 决策树 XGBoot |
Zhao等[ | 中国 | 15~18 | n = 1029 训练集 = 728 测试集 = 301 | 横断面研究;人口学特征、PPS; 10i-CDRS; FFMQ; GSES; BFPI; LOT; PHQ-9数据,人工神经网络建立识别模型 | 抑郁 | 准确率 抑郁:81.06% | 人工神经网络 |
Zhang等[ | 中国 | 12~18 | n = 56 E = 18 C = 38 | 访谈:通过面对面访谈收集数据,通过MINI进行抑郁评估,提取全局和局部特征并构建模型 | 抑郁 | 准确率 融合模型:73.1% 细粒度融合模型:71.75% 粗粒度融合模型:69.59% | 粗粒度融合 细粒度融合 |
Jin等[ | 美国 | 13~15.5 | n = 348 训练集 = 174 测试集 = 174 | 纵向研究;被试先进行RSFC扫描,然后使用IDAS-II评估被试当时和18个月后的抑郁 | 抑郁 | AUC 内部连接模型:0.78 扩展连接模型:0.72 整脑模型:0.69 | 神经网络模型 |
Zhou等[ | 中国 | E1=16.22 E2=16.02 C=16.32 | n = 300 训练集 = 150 测试集 = 150 | 横断面研究;所有被试完成结构性磁共振成像扫描,提取68个脑区皮质厚度作为特征,建立分类模型进行区分 | 抑郁 | 准确率 MDD vs. 对照:79.21% SCZ vs. 对照:69.88% MDD vs. SCZ:62.93% | 支持向量机 |
Hawes等[ | 美国 | 3~15 | n = 748 训练集 = 374 测试集 = 374 | 纵向研究;从3~15岁,每3年进行一次生理和心理的评估,在15岁时进行抑郁和焦虑的识别 | 焦虑、 抑郁 | AUC 抑郁:0.669~0.751 焦虑:0.621-0.788 | 逻辑回归模型 |
Xiong等[ | 澳大利亚 | 6~16 | n = 297 将数据集随机分成5个组,依次作为训练集 | 横断面研究;通过YODA收集被试的焦虑数据,然后用贝叶斯神经网络方法预测青少年的焦虑 | 焦虑 | AUC 分离焦虑:0.8683 社交焦虑:0.9091 广泛性焦虑:0.8769 | 贝叶斯神经网络 机器学习分类器 深度学习分类器特征选择器 |
Sawalha等[ | 美国 | 5.5~9.5 | n = 45 训练集n = 36 测试集n = 9 | 横断面研究:焦虑、非焦虑儿童完成情绪面孔处理任务,进行fMRI扫描,比较焦虑与非焦虑儿童颞极区的神经活动差异 | 焦虑 | 准确率 右侧颞极区可以最准确地区分焦虑儿童和非焦虑儿童(分类准确率81%) | AdaBoost模型 |
Haque等[ | 澳大利亚 | 4~17 | n = 1011 训练集 = 708 测试集 = 303 | 横断面研究;根据澳大利亚青少年心理健康调查的数据库,用3种机器学习模型检测OCD、SAD和ADHD | OCD、SAD、ADHD | 准确率 GNB(OCD):91% GNB(SAD):79% 随机森林(ADHD):91% | 机器学习 随机森林 GNB |
Chavanne等[ | 法国 | 14~23 | n = 736 训练集 = 580 测试集 = 156 | 纵向研究:测量14岁时的灰质体积,完成DAWBA、GAD、mAD、SURPS、SDQ、LEQ、NEO-FFI和TCI-R,对18~23岁的焦虑进行预测 | GAD、mAD、焦虑 | AUC GAD:0.6 mAD:0.52 总体焦虑:0.68 | 随机森林 支持向量机 逻辑回归 |
[1] |
BENNETT K, COURTNEY D, DUDA S, et al. An appraisal of the trustworthiness of practice guidelines for depression and anxiety in children and youth[J]. Depress Anxiety, 2018, 35(6): 530-540.
doi: 10.1002/da.22752 pmid: 29697887 |
[2] | CAMPISI S C, ATAULLAHJAN A, BAXTER J A B, et al. Mental health interventions in adolescence[J]. Curr Opin Psychol, 2022, 48: 101492. |
[3] | ZHOU Y, CHEN X, GU R, et al. Personalized identification and intervention of depression in adolescents: a tertiary-level framework[J]. Sci Bull, 2024, 69(7): 867-871. |
[4] | 莫大明, 闫军伟, 李欣, 等. 新冠肺炎疫情下儿童青少年焦虑症状检出率及影响因素[J]. 四川精神卫生, 2020, 33(3): 202-206. |
MO D M, YAN J W, LI X, et al. Prevalence rate and related influencing factors of anxiety disorder in children and adolescents during the outbreak of COVID-19[J]. Sichuan Ment Health, 2020, 33(3): 202-206. | |
[5] | BHATTACHARYA R, SHEN C, SAMBAMOORTHI U. Excess risk of chronic physical conditions associated with depression and anxiety[J]. BMC Psychiatry, 2014, 14: 1-10. |
[6] | CHENG W, ROLLS E, GONG W, et al. Sleep duration, brain structure, and psychiatric and cognitive problems in children[J]. Mol Psychiatry, 2021, 26(8): 3992-4003. |
[7] | YUAN W, CHEN L, WU Y, et al. Sleep time and quality associated with depression and social anxiety among children and adolescents aged 6-18 years, stratified by body composition[J]. J Affect Disord, 2023, 338: 321-328. |
[8] | 苏志强, 王钢, 刘传星, 等. 童年中晚期抑郁的发展及其与问题行为的并发:一项两年追踪研究[J]. 心理发展与教育, 2018, 34(2): 200-209. |
SU Z Q, WANG G, LIU C X, et al. The development trend of depression and its concurrency with problem behaviors during middle and late childhood: a two-year longitudinal study[J]. Psychol Dev Educ, 2018, 34(2): 200-209. | |
[9] |
张婧雅, 邹敏, 孙宏伟, 等. 听障儿童青少年焦虑或抑郁情绪心理干预效果的系统综述[J]. 中国康复理论与实践, 2023, 29(9): 1004-1011.
doi: 10.3969/j.issn.1006-9771.2023.09.002 |
ZHANG J Y, ZOU M, SUN H W, et al. Effect of psychological intervention on anxiety or depression in children and adolescents with hearing impairment: a systematic review[J]. Chin J Rehabil Theory Pract, 2023, 29(9): 1004-1011. | |
[10] |
GROSS J J. Emotion regulation: affective, cognitive, and social consequences[J]. Psychophysiology, 2002, 39(3): 281-291.
doi: 10.1017/s0048577201393198 pmid: 12212647 |
[11] | GHANDOUR R M, SHERMAN L J, VLADUTIU C J, et al. Prevalence and treatment of depression, anxiety, and conduct problems in US children[J]. J Pediatr, 2019, 206: 256-267. e3. |
[12] |
THAPAR A, COLLISHAW S, PINE D S, et al. Depression in adolescence[J]. Lancet, 2012, 379(9820): 1056-1067.
doi: 10.1016/S0140-6736(11)60871-4 pmid: 22305766 |
[13] |
KIELING C, ADEWUYA A, FISHER H L, et al. Identifying depression early in adolescence[J]. Lancet Child Adolesc Health, 2019, 3(4): 211-213.
doi: S2352-4642(19)30059-8 pmid: 30878111 |
[14] |
PATTON G C, COFFEY C, ROMANIUK H, et al. The prognosis of common mental disorders in adolescents: a 14-year prospective cohort study[J]. Lancet, 2014, 383(9926): 1404-1411.
doi: 10.1016/S0140-6736(13)62116-9 pmid: 24439298 |
[15] |
CALDWELL D M, DAVIES S R, HETRICK S E, et al. School-based interventions to prevent anxiety and depression in children and young people: a systematic review and network meta-analysis[J]. Lancet Psychiatry, 2019, 6(12): 1011-1020.
doi: S2215-0366(19)30403-1 pmid: 31734106 |
[16] |
SHATTE A B R, HUTCHINSON D M, TEAGUE S J. Machine learning in mental health: a scoping review of methods and applications[J]. Psychol Med, 2019, 49(9): 1426-1448.
doi: 10.1017/S0033291719000151 pmid: 30744717 |
[17] |
TRICCO A C, LILLIE E, ZARIN W, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation[J]. Ann Intern Med, 2018, 169(7): 467-473.
doi: 10.7326/M18-0850 pmid: 30178033 |
[18] | HAQUE U M, KABIR E, KHANAM R. Detection of child depression using machine learning methods[J]. PLoS One, 2021, 16(12): e0261131. |
[19] | ZHAO F F. Artificial neural network application for identifying risk of depression in high school students: a cross-sectional study[J]. BMC Psychiatry, 2021, 21: 1-13. |
[20] | ZHANG L, FAN Y, JIANG J, et al. Adolescent depression detection model based on multimodal data of interview audio and text[J]. Int J Neural Syst, 2022, 32(11): 2250045. |
[21] |
JIN J, VAN SNELLENBERG J X, PERLMAN G, et al. Intrinsic neural circuitry of depression in adolescent females[J]. J Child Psychol Psychiatry, 2020, 61(4): 480-491.
doi: 10.1111/jcpp.13123 pmid: 31512744 |
[22] |
ZHOU Z, WANG K, TANG J, et al. Cortical thickness distinguishes between major depression and schizophrenia in adolescents[J]. BMC Psychiatry, 2021, 21(1): 361.
doi: 10.1186/s12888-021-03373-1 pmid: 34284747 |
[23] | HAWES M T, SCHWARTZ H A, SON Y, et al. Predicting adolescent depression and anxiety from multi-wave longitudinal data using machine learning[J]. Psychol Med, 2023, 53(13): 6205-6211. |
[24] | XIONG H, BERKOVSKY S, ROMANO M, et al. Prediction of anxiety disorders using a feature ensemble based bayesian neural network[J]. J Biomed Inform, 2021, 123: 103921. |
[25] |
SAWALHA J, YOUSEFNEZHAD M, SELVITELLA A M, et al. Predicting pediatric anxiety from the temporal pole using neural responses to emotional faces[J]. Sci Rep, 2021, 11(1): 16723.
doi: 10.1038/s41598-021-95987-4 pmid: 34408203 |
[26] | HAQUE U M, KABIR E, KHANAM R. Early detection of paediatric and adolescent obsessive: compulsive, separation anxiety and attention deficit hyperactivity disorder using machine learning algorithms[J]. Health Inf Sci Syst, 2023, 11(1): 31. |
[27] | CHAVANNE A V, PAILLÈRE MARTINOT M L, PENTTILÄ J, et al. Anxiety onset in adolescents: a machine-learning prediction[J]. Mol Psychiatry, 2023, 28(2): 639-646. |
[28] | MEIER S M, DECKERT J. Genetics of anxiety disorders[J]. Curr Psychiatry Rep, 2019, 21(3): 16. |
[29] | LUSSIER A A, HAWRILENKO M, WANG M J, et al. Genetic susceptibility for major depressive disorder associates with trajectories of depressive symptoms across childhood and adolescence[J]. J Child Psychol Psychiatry, 2021, 62(7): 895-904. |
[30] | WEN L, YANG K, CHEN J, et al. Associations between resilience and symptoms of depression and anxiety among adolescents: examining the moderating effects of family environment[J]. J Affect Disord, 2023, 340: 703-710. |
[31] | HAMILTON J L, SHAPERO B G, STANGE J P, et al. Emotional maltreatment, peer victimization, and depressive versus anxiety symptoms during adolescence: hopelessness as a mediator[J]. J Clin Child Adolesc, 2013, 42(3): 332-347. |
[32] | STEARE T, MUÑOZ C G, SULLIVAN A, et al. The association between academic pressure and adolescent mental health problems: a systematic review[J]. J Affect Disord, 2023, 339: 302-317. |
[33] | HALFON S, DOYRAN M, TÜRKMEN B, et al. Multimodal affect analysis of psychodynamic play therapy[J]. Psychother Res, 2021, 31(3): 313-328. |
[34] | WANG Y, WANG J, LIU X, et al. Detecting depression through gait data: examining the contribution of gait features in recognizing depression[J]. Front Psychiatry, 2021, 12: 661213. |
[35] |
ACHARYA U R, SUDARSHAN V K, ADELI H, et al. A novel depression diagnosis index using nonlinear features in EEG signals[J]. Eur Neurol, 2015, 74(1-2): 79-83.
doi: 10.1159/000438457 pmid: 26303033 |
[36] | ABD-ALRAZAQ A, ALSAAD R, AZIZ S, et al. Wearable artificial intelligence for anxiety and depression: scoping review[J]. J Med Internet Res, 2023, 25: e42672. |
[1] | WEI Xiaowei. Effect of digital empowerment techniques on physical activity and health for children with intellectual and developmental disabilities: a systematic review [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(5): 497-504. |
[2] | WANG Hongzhi, YANG Jian. Application of virtual reality technology in physical activity and health of children and adolescents with cerebral palsy: a systematic review of systematic reviews [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(5): 505-512. |
[3] | ZHONG Xiaoke, WANG Qi, CHANG Siqin, JIANG Changhao. Effect of long-term physical activity on executive function of children with autism spectrum disorder: a systematic review [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(5): 535-542. |
[4] | WU Jiaming, ZHANG Qing, WU Aihong. Functioning, health and developmental benefits of music interventions for children and adolescents with intellectual and developmental disabilities: a systematic review of systematic reviews [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(5): 543-553. |
[5] | WEI Ning, ZENG Yanling, JIANG Na, ZHANG Qian, YI Xiaozhe, WANG Jianyun, WANG Dengting, ZHANG Yan, PEI Hongbo, HUANG Chaorong. Impact of parental efficacy in doctor-patient communication on rehabilitation outcomes for children with autism spectrum disorder [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(5): 577-585. |
[6] | WEI Xiaowei. Research on international policies of digital empowerment of physical activity and health in children with disabilities: framework, core content, and strategic action [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(4): 381-388. |
[7] | WANG Zhenzhou, ZHANG Yang. International researches on artificial intelligence enabled diagnosis and intervention for children with disabilities in the past two decades: a visualized analysis [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(4): 404-415. |
[8] | LU Kai, LIU Yuxin, WANG Sujuan, CHEN Weiming, XU Yetao, ZHOU Hao, YAO Yelin, YIN Huanhuan, ZHANG Zhengzheng, DU Yan. Inter-rater reliability of Medical Research Council muscle strength test in pediatric intensive care unit [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(4): 493-496. |
[9] | WANG Xinting, YANG Jian. Content and psychometric properties of children's motor function and activity measurements using ICF [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(3): 265-272. |
[10] | ZHANG Qing, WU Aihong, WU Dang, SHI Caixiu. Building an inclusive education-oriented, ICF-based and multi-faceted education placement service for children with special needs: policy, theoretical framework and methodology [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(2): 141-147. |
[11] | XI Yue, YANG Jian. Physical activity intervention and its health benefits for children and adolescents with cerebral palsy: a systematic review [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(2): 157-167. |
[12] | WU Jinlong, REN Zhanbing, YI Zizhen, PENG Li. Characteristics of interbrain synchrony during interactions among individuals with autism spectrum disorder: a scoping review [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(2): 168-175. |
[13] | LI Fang, LIU Huizhen, MEI Liping, ZHANG Tong, ZHANG Haojie, LI Bingjie, ZHAO Jun. Related factors of post-stroke depression in patients with cerebral infarction during hospitalization in rehabilitation department [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(2): 217-222. |
[14] | ZHANG Minglan, ZHANG Lingling, WANG Lisha, LIU Li, GAO Run, RAO Jiang, LIU Wan, XIA Zi'an, ZHANG Chuanwen, CHENG Xinxin. Impact of autonomic nerve function on motor function in patients with post-stroke depression [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(2): 223-231. |
[15] | SONG Yiling, REN Yuanchun, ZHU Feilong, KUANG Dongqing, CAO Qingjiu, LIN Yang, WANG Fang. Characteristics and relationship between the development of gross motor skills and executive function in children with attention deficit hyperactivity disorder [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|